Mostrando entradas con la etiqueta 3º ciclo. Mostrar todas las entradas
Mostrando entradas con la etiqueta 3º ciclo. Mostrar todas las entradas

21 marzo, 2022

12 marzo, 2022

Retos topológicos a partir de 6 años.

 

Recorrer un grafo sin pasar dos veces por un mismo segmento. Retos topológicos a partir del 1º ciclo de Primaria.
Proyecto MATE.TIC.TAC

A continuación se ofrece la aplicación.

07 marzo, 2022

Operaciones combinadas en un contexto de razonamiento numérico y operacional.

En el post "Operaciones combinadas con y sin la calculadora" se ofrece una aplicación para trabajar las operaciones en un contexto de razonamiento numérico y operacional y se enlaza con aplicaciones que dan verdadero sentido a las operaciones combinadas en un contexto de resolución de problemas aritméticos.

En este nuevo post se ofrecen dos aplicaciones análogas (con diferentes niveles de dificultad) para abordar las operaciones combinadas a lo largo de la Etapa Primaria en un contexto de razonamiento numérico y operacional.

"Cartulinas_operaciones". A partir de 1º ciclo de Primaria.
(3 números y 2 operaciones). Proyecto MATE.TIC.TAC


"Cartulinas_operaciones". A partir de 2º ciclo de Primaria.
(4 números y 3 operaciones). 
 Proyecto MATE.TIC.TAC


A continuación se ofrece la aplicación.

23 diciembre, 2021

Jackpot numérico. Combinatoria, azar y probabilidad.



Jackpot numérico, de didactmaticprimaria.net.  Proyecto MATE.TIC.TAC



Con la realización del excelente proyecto digital "Laboratorio básico de Azar, Probabilidad y Combinatoria" (trabajo premiados por el ITE con el 1º premio, en 2010) fuimos pioneros en la didáctica de esta temática basada en un enfoque frecuencial de la probabilidad mediante una gran riqueza de equipamiento digital e interactivo para la realización de experimentos aleatorios.

El proyecto MATE.TIC.TAC incorpora un buen número de aplicaciones y macroaplicaciones para abordar esta temática, desde 1º ciclo de Primaria.


Carrera de insectos, de Didactmaticprimaria.net. Proyecto MATE.TIC.TAC 


Ruletas, de Didactmaticprimaria.net. Proyecto MATE.TIC.TAC 

Situaciones experimentales de Azar y Deterministas. Didactmaticprimaria.net
.Proyecto MATE.TIC.TAC 

 

Expermientos aleatorios. Equipamiento experimental. Didactmaticprimaria.net
.Proyecto MATE.TIC.TAC 

 

Microproyecto LOTOS. Didactmaticprimaria.net. Proyecto MATE.TIC.TAC 

 

Probabilidad de sucesos simples y compuestos. Didactmaticprimaria.net
.Proyecto MATE.TIC.TAC 


Circuitos probabilísticos, de Didactmaticprimari.net. Proyecto MATE.TIC.TAC 


 Jackpot Numérico,  es el último trabajo incorporado al proyecto MATE.TIC.TAC para el tratamiento del Azar, la Combinatoria y la Probabilidad a partir del 2º ciclo de la Etapa Primaria.


Otros  post relacionados con éste:


23 noviembre, 2021

Combinatoria en Primaria. ¿Te lo explico o te facilito que tú lo descubras?

El vídeo, en todos los ámbitos de la vida social (noticias, ocio, información de todo tipo, educación, marketing...), ha crecido y evolucionado rápidamente en la última década gracias a la aparición de YouTube y demás redes sociales, alcanzando cotas de popularidad insospechadas y una gran proyección de futuro con la aceleración en el consumo de contenido digital. El streaming (tecnología que permite ver y oír contenidos que se transmiten desde internet u otra red sin tener que descargar previamente los datos al dispositivo desde el que se visualiza y oye el archivo) ha potenciado, sin duda, esta popularidad.

Los vídeos educativos (y en particular los vídeos educativos de matemáticas) participan, obviamente, de este auge, consumo y popularidad general del vídeo, estrechamente vinculado con el mundo digital y la “democratización” de las tecnologías. Tecnologías de vanguardia (el smartphone, por ejemplo) son accesibles a una gran mayoría y han acelerado la producción de todo tipo de vídeos. Prácticamente cualquiera puede realizar un vídeo de suficiente calidad técnica y colocarlo en las redes sociales sin necesidad de capacitación extensa o costosa. Esto permite que cada vez mayor porcentaje de la población mundial tenga acceso amplio a conocimientos y oportunidades educativas.

Un porcentaje cada vez más elevado del profesorado aprovecha el vídeo y canales de vídeo específicos (de producción propia o ajena) como recurso educativo para ofrecer explicaciones más amenas y entretenidas de conceptos o temas; para repasar; para mostrar problemas tipo resueltos para su estudio en diferentes etapas educativas; para ofrecer píldoras matemáticas, resúmenes y trucos que ayuden al estudiante en su práctica diaria; para despertar el gusto por las matemáticas además de ayudar a aprobarlas; para favorecer la comprensión de lo que no se ha entendido en clase; o para aplicar la metodología de la clase invertida o “flipped classroom”,...

Es evidente y lógica la heterogeneidad reinante en el amplísimo conjunto de los vídeos educativos para matemáticas, tanto en su calidad técnica, como en su intencionalidad pedagógica, o en su interés y potencial didáctico. De una manera totalmente subjetiva tengo que admitir que me sorprende el número de visualizaciones de muchos vídeos de matemáticas en relación con mi valoración sobre su interés didáctico. Pero no quiero tratar aquí cómo promocionan los desconocidos y sofisticados algoritmos (de Youtube, por ejemplo) unos vídeos sobre otros, ni en la ética u objetivos de las redes sociales (*).

(*) Al respecto, son muy ilustrativas las opiniones del experto Jaron Lanier en su libro "Ten Arguments for Deleting Your Social Media Accounts Right Now" ("Diez argumentos para eliminar sus cuentas de redes sociales ahora mismo"). (http://www.jaronlanier.com/tenarguments.html).

Se percibe claramente una preocupación creciente por ofrecer explicaciones más amenas y atractivas, con mayor dinamismo y riqueza de modelos gráficos para apoyar la comprensión de conceptos, con mayor calidad técnica y didáctica. Lograr que las explicaciones con vídeos sea más amenas que las breves y estereotipadas explicaciones de los libros de texto es algo fácil de conseguir.

Aunque el vídeo educativo es un recurso educativo más (y puede ser utilizado además de otros), creo que este imparable auge en la producción y consumo de vídeos educativos de matemáticas, su fácil acceso, su gratuidad, lo cómodo de su uso,... está extendiendo y consolidando los enfoques pedagógicos tradicionales en la enseñanza-aprendizaje de las matemáticas.


Los enfoques pedagógicos tradicionales son claramente predominantes en la gran mayoría de estos vídeos para matemáticas. Para los enfoques pedagógicos tradicionales lo prioritario de toda actividad educativa es la transmisión de contenidos (“TE LO EXPLICO”) siendo la tarea del docente transmitir contenidos que él conoce y que sus alumnos ignoran. Esto se hace muy patente en los vídeos de matemáticas, incluso en los que más calidad pedagógica muestran en sus contenidos. Quizá, por la propia naturaleza del vídeo, sea difícil alcanzar enfoques de corte más constructivista o crítico-dialógico en los que lo prioritario es facilitar un proceso activo de construcción de conocimientos que no pueden adquirirse de manera pasiva. 

Más que “enseñar”, lo prioritario es construir aprendizajes sólidos que permitan enfrentar situaciones nuevas, no previstas en el propio aprendizaje; ayudar a aprender estimulando la actitud investigadora y crítica; fomentando la experimentación, verificación y descubrimiento (más o menos guiado) de los resultados; potenciando la formulación de conjeturas, la invención y la resolución de problemas frente a la visión del profesor (u otro docente experto) como única fuente de respuestas correctas...Para ello es necesario facilitar el “andamiaje” que permita construir nuevos conocimientos a partir de los que ya se tienen, que posibiliten avanzar desde el desarrollo actual al potencial (Vygotski 1978), en la interacción con otros (los docentes y, en especial, los compañeros).

Creo, además, que todo buen vídeo de matemáticas aspira a ser una buena aplicación de matemáticas más interactiva. Una buena aplicación interactiva, en mucha mayor medida que un buen vídeo, permite implementar un aprendizaje basado en la manipulación, experimentación, verificación de hipótesis, descubrimiento...El problema es que este tipo de aplicaciones interactivas de matemáticas enfocadas a la construcción activa de los aprendizajes son muchísimo menos numerosas y no suelen ser gratuitas....

Para ilustrar el “¿TE LO EXPLICO?”

Aquí muestro un excelente vídeo sobre COMBINATORIA (rico en modelos gráficos) de Adrián Paenza (periodista argentino, matemático y destacado divulgador de matemáticas).




Para ilustrar el “¿TE FACILITO QUE TÚ LO DESCUBRAS?”, una aplicación de introducción a la Combinatoria del proyecto MATE.TIC.TAC:




Otro post directamente relacionado con éste es:

19 julio, 2021

Aprovechamiento de problemas con errores o incoherencias.

Un problema que presenta errores o incoherencias, como el que muestra la figura que sigue, puede ser aprovechado y propuesto con la intención de resolver una situación aún más interesante que la propuesta inicialmente, para favorecer en nuestros/as alumnos/as el conflicto cognitivo generador de análisis crítico y de búsqueda de argumentos, hipótesis, respuestas...

Problema con errores o incoherencias
Problema con errores o incoherencias


Aunque no creo que esa fuese la intencionalidad del problema de la figura, propuesto para 4º de Primaria, éste puede dar mucho juego en 4º de Primaria y cursos posteriores, puesto que el contenido involucrado, el perímetro, no presenta especiales complicaciones.

Efectivamente el problema tiene errores o incoherencias. Se trata de un boceto o croquis de una terraza. Los errores no se derivan de que los segmentos y sus medidas guarden, o no, correctamente relaciones de proporcionalidad directa, ya que no se trata de un plano.

Invito al lector/a a reflexionar sobre los siguientes aspectos:

1.- Suponiendo que el boceto refleje la realidad de una terraza con todos sus lados ortogonales (sólo ángulos rectos), ¿habría coherencia en las medidas? ¿Podrían ser todas correctas ?

2.- Suponiendo que las medidas estén bien realizadas y escritas, ¿podría el boceto corresponder a una terraza con todos sus lados ortogonales?

3.- Suponiendo que el boceto refleje la realidad de una terraza con todos sus lados ortogonales (sólo ángulos rectos), ¿Podría resolverse el problema considerando válidas algunas medidas?

4.- Suponiendo que el boceto refleje la realidad de una terraza con todos sus lados ortogonales y los lados mayores estén bien medidos, ¿ qué datos serían innecesarios?

Tal vez errores como éste sean fruto de una interpretación rutinaria y calculista del concepto “perímetro”, de una visión mayoritaria que reduce el concepto a una simple suma de varios sumandos. O puede que se deba a una insuficiente indagación y exploración del concepto... Pero el concepto “perímetro” es mucho más rico y da mucho más juego en Primaria. Los/as alumnos/as pueden descubrir interesantes relaciones y argumentar sobre perímetros de figuras aún sin realizar cálculos. 

Sirva como ilustración de lo que acabo de afirmar esta aplicación para 2º ciclo de Primaria del proyecto MATE.TIC.TAC (Se profundiza más sobre “perímetros” en las aplicaciones correspondientes al 3º ciclo).

Perímetros_2º ciclo de Primaria, de didactmatic.primaria.net


A continuación se ofrece la aplicación

12 junio, 2021

COMPARAR Y ORDENAR TRES NÚMEROS. ¿ES FÁCIL?¿ES DIFÍCIL? ¿DEPENDE...?

Ya desde infantil los/as niños/as saben ordenar colecciones de elementos por algún atributo perceptible (ordenar regletas según su longitud, por ejemplo).

Es obvio que la ordenación de tres o más números que tenemos a la vista es algo fácil y rápido de resolver incluso para niños de Primer ciclo de Primaria que conocen el sistema de numeración decimal y, por tanto, un tipo de ejercicio que siempre se propone en Primaria.

Hace unos días, AJ, hijo de un amigo, que cursa 2º de Bachillerato, solicitó mi ayuda porque estaba “atascado” con la realización de un diagrama de flujo que resolviera la ordenación de tres números cualesquiera introducidos por un usuario. Diseñar un procedimiento computacional gráfico bien definido que dé como salida la ordenación de tres números de entrada cualesquiera (en principio desconocidos) es, obviamente, una tarea más abstracta y fuera del ámbito de Primaria. Sin embargo el cerebro que ordena tres números dados visualmente y el algoritmo que ordena tres números introducidos por un usuario en el ordenador, deben operar con bastante similitud.

Si pidiéramos a niños/as de diferentes niveles de Primaria, que ya saben resolver con rapidez y exactitud la ordenación de tres o más números, que argumentaran detalladamente cómo lo han hecho, la exhaustividad, exactitud y generalidad de las argumentaciones dadas variaría mucho en función de los niveles. Y variaría en mucha mayor medida que la variabilidad mostrada en la realización de las ordenaciones. Esto no es de extrañar porque el razonamiento y la argumentación son habilidades cognitivas de orden superior, requieren mayores niveles de competencia.

"Comparando y ordenando pesos con los "freak-animal"", de didactmaticprimaria.net

A continuación se ofrece la aplicación.

19 julio, 2020

Laberintos y Topología (Infantil y Primaria)


Suele pensarse que la Topología o “Geometría de la posición” es una parte complicada de la Matemática. Pero dado que ésta no se interesa por la medida sino solamente por la forma y en cómo ésta puede variar sin provocar roturas, hay elementos de esta disciplina que aparecen antes que el concepto de medida (nociones de posición, dentro-fuera, interior-exterior, formas topológicamente equivalentes, conexiones entre agujeros, caminos dentro de laberintos, etc). Estos aspectos se pueden abordar adecuadamente desde edades muy tempranas. También se puede progresar en el reconocimiento de propiedades y regularidades de carácter topológico a lo largo de la Etapa Primaria.


La construcción de la noción de “espacio” constituye una de las bases lógico-matemáticas fundamentales que sirven para estructurar el futuro pensamiento abstracto-formal. Para garantizar la comprensión de los principios fundamentales de la geometría en el futuro es de suma importancia que los docentes, mediante la  selección correcta de estrategias de enseñanza y actividades de aprendizaje adecuadas, promuevan el desarrollo de nociones topológicas, proyectivas y euclidianas. 
En “La representación del espacio en el niño”, Jean Piaget y Bärbel Inhelder defienden que los conceptos fundamentales y primeros del espacio (como espacio representado y no  como concepción global del mismo) no son euclidianos, sino “topológicos”. Es decir, basados en correspondencias que involucran relaciones de proximidad (o de vecindaje), relaciones de separación, relaciones de orden o sucesión espacial (orden lineal y circular), relaciones de envolvimiento y continuidad. Afirman que "el orden genético de adquisiciones de las nociones espaciales, es inverso al orden histórico del progreso de la ciencia", que las relaciones topológicas son consideradas con anterioridad a las  proyectivas y  euclidianas por parte del niño.

Aproximadamente a partir de los dos años, las relaciones espaciales más sencillas se expresan mediante palabras como: “arriba”, “abajo”, “encima”, “debajo”, “más arriba”, “más abajo”, “delante”, “detrás”,…; dichas expresiones contribuyen eficazmente a alcanzar las nociones espaciales. En esta etapa el niño no puede distinguir, por ejemplo, un círculo de un cuadrado porque ambas son figuras cerradas, pero si las puede diferenciar de la figura de una herradura. Posteriormente logra distinguir líneas curvas de rectas y figuras largas de cortas, así como también diferenciar el espacio interior y exterior de una frontera dada o determinar posiciones relativas al interior de un orden lineal.
Luego aparecen progresivamente relaciones de tipo proyectivo. La geometría proyectiva puede entenderse, informalmente, como la geometría que se obtiene cuando nos colocamos en un punto, mirando desde ese punto. Esto es, cualquier línea que incide en nuestro "ojo" nos parece ser solo un punto, en el plano proyectivo, ya que el ojo no puede "ver" los puntos que hay detrás. Equivale a la proyección sobre un plano de un subconjunto del espacio en la geometría euclidiana tridimensional. Estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida.
Posteriormente, aparecen las relaciones de tipo euclidiano que tratan de la representación de las longitudes, ángulos, áreas y volúmenes como propiedades que permanecen constantes, cuando las figuras representadas son sometidas a transformaciones rígidas.

No cabe duda que en la resolución de los laberintos usuales (que suelen proponerse desde las edades más tempranas) se ven involucradas nociones topológicas básicas (interior, exterior, dentro, fuera, abierto, cerrado,…) y que ya desde Infantil (4-5 años) se manejan nociones básicas de tipo proyectivo y euclidiano.


Laberintos. Educación Infantil. Proyecto MATE.TIC.TAC


El Proyecto MATE.TIC.TAC. propone la realización de laberintos clásicos (o más usuales) desde Infantil. Concretamente propone dos procedimientos diferentes de resolución de laberintos: trazado del recorrido a mano (mediante uno o más trazos) y teledirigiendo a un muñeco mediante las teclas (arriba, abajo, izquierda y derecha) de una consola presente en pantalla.






También en primer ciclo se proponen laberintos de recorrido con muñeco teledirigido, solo que más complejos que en Infantil y en los que se van introduciendo variantes (varias entradas, varios salidas, varios recorridos válidos,...




Los laberintos clásicos siempre tienen una solución, una entrada y una salida. A partir del 2º ciclo de Primaria, el proyecto MATE.TIC.TAC  propone una nueva categoría de laberintos que no se ajustan a la noción clásica de "laberinto" y que conectan con aspectos topológicos que no siendo elementales pueden ser comprendidos y utilizados por alumnos/as de Primaria.

Topológicamente equivalentes. ProyecTo MATE.TIC.TAC

MATE.TIC.TAC propone "LABERINTOS CON PLATAFORMAS Y PUENTES" que son topológicamente equivalentes a grafos con nodos y arcos. Ahora se puede imponer una restricción al recorrido: que pase por cada uno de los puentes una sola vez. Se trata de una clase especial de "laberintos" porque puede que no tenga solución, o que tenga múltiples soluciones diferentes, dependiendo de la plataforma en que se inicie el recorrido.

Los/las lectores/as más expertos habrán reconocido, de inmediato, que se trata de una adaptación para escolares, con variantes, del famoso problema de "Los puentes de Königsberg" (origen de la Topología) y que esto enlaza directamente con la "Teoría de Grafos".

Los puentes de Königsberg. Proyecto MATE.TIC.TAC


"LABERINTOS CON PLATAFORMAS Y PUENTES" puede ser considerado como una ampliación del  excepcional "Taller de Topología para alumnos/as de Primaria" (ver vídeo), del proyecto MATE.TIC.TAC, incluido en el el bloque de "procesos, métodos y actitudes" del 3º ciclo. En dicho  taller se proponen múltiples figuras para ser recorridas de un solo trazo, se muestran  transformaciones topológicas que permiten identificar figuras topológicamente equivalentes. Se analizan, codifican y estudian recorridos y soluciones, buscando el descubrimiento de regularidades. Se puede realizar cualquier grafo colocando nodos y arcos; y evaluar si puede, o no, ser recorrido de un solo trazo. De manera concreta se puede analizar el problema de "Los puentes de Königsberg" y variantes con menos o más puentes....

Pero mientras que en "Taller de Topología" los retos propuestos se resuelven mediante trazado "a mano", "de un solo trazo", aquí se ha añadido el atractivo de adaptarlos para que puedan ser recorridos mediante un monigote teledirigido. De esta manera, esta misma aplicación se adecúa y se ofrece para alumnos/as de 2º ciclo de Primaria (obviando, si es necesario, la pretensión de que descubran patrones topológicos...)


29 junio, 2020

Las investigaciones asistidas en MATE.TIC.TAC

Invertir triángulos de bolas. Investigación. Proyecto MATE.TIC.TAC

Son numerosísimas las investigaciones, relativamente complejas, que se proponen en el proyecto MATE.TIC.TAC, y que se hacen fáciles al estar asistidas por espacios de exploración interactiva bien diseñados, con todo el "andamiaje" necesario para avanzar con seguridad en la consecución del objetivo propuesto.

El reto de invertir un triángulo de bolas desplazando un número de ellas (el mínimo, que generalmente se da) es frecuentemente propuesto en matemáticas, en diferentes niveles. Lo que no es frecuente es proponer la generalización del reto a partir de la exploración de un número suficiente de casos particulares, utilizando un proceso inductivo informal, de naturaleza experimental.

Un buen número de las investigaciones propuestas en MATE.TIC.TAC ( y que no se encuentran así, ni por asomo, en la gran mayoría de los proyectos digitales de matemáticas) se basan en la exploración de relaciones numérico-geométricas, en la búsqueda de patrones o regularidades numérico-geométricas...

Evidentemente, el diseño de las mismas es incomparablemente más exigente que la propuesta del mismo reto expresada por escrito y apoyada con alguna imagen estática. Requiere que, previamente, el desarrollador haya experimentado, investigado perfectamente el tema que propone, haya descubierto las regularidades implícitas...Y luego sepa implementar adecuadamente los espacios de exploración interactiva para facilitar el trabajo de los alumnos/as ( y de los docentes). 

Hoy mismo me ha llegado a mi móvil un artículo de EuropaSur titulado "Para qué las matemáticas". Evidentemente, lo he leído. Reproduzco, aquí, parte de los párrafos finales: 


"Desde siempre, y ahora más que nunca, debe fomentarse el estudio de las matemáticas al mismo nivel que el de la lengua materna, como se hacía antes de que el movimiento “hacer todo sin esfuerzo” se fuera apoderando de las mentes de los legisladores. Profesionales de la nada –terminada en “gogo”− que han conseguido convertir los libros de texto en revistas ilustradas y tebeos de colorines, y convencer a los administradores públicos de que se puede enseñar una materia sin sabérsela, dando instrucciones del método de enseñar lo que sea sin que haya que tener idea de lo que es.
La matemática subyace a todo, es el lenguaje de la Naturaleza. Todos esos avances que percibimos en comunicación, información y previsión, en procesamiento de imágenes y en reconocimiento de patrones, en seguridad, en criptografía, están escritos en esa lengua universal que como la música pertenece a todos y es sustancial a todas las sensaciones. España es hoy una potencia mundial en Matemáticas [...] Nos falta una sociedad concienciada y sensible a lo importante, y un sistema educativo que no confíe la enseñanza de la matemática a los que no han sido, ellos mismos, educados en su metodología; más de la mitad de los profesores de primaria y secundaria en España, no son matemáticos de formación."

Sí, la realidad de la escuela, al menos en España, es que un elevado porcentaje de docentes de matemáticas dotados, no cabe duda, de gran entusiamo y de las mejores intenciones, ha tenido poco contacto, en su formación inicial, con la matemática y su didáctica , o no las ha "vivido" o experimentado suficientemente... 

En un contexto así no es fácil que el criterio general y predominante sea el más adecuado para orientar el desarrollo de competencias matemáticas en los/as niños/as. Y pueden incluso "viralizarse" tendencias nada convenientes, gracias al poderosísimo altavoz que suponen las redes sociales, o al poder tergiversador y de "burbuja" del marketing, o al poco análisis crítico,...

Para mí - que no soy sospechoso de no conceder al cálculo mental la importacia que merece- un ejemplo de esto último es la constatación del elevado porcentaje de docentes que asocian la excelencia en matemáticas con la excelencia en el cálculo, la proliferación de los campeonatos de cálculo mental, o que se publicite un método de cálculo como una revolución en la enseñanza-aprendizaje de las matemáticas, o que se "venda" un buen nivel de cálculo mental como "superpoderes" para "supehéroes" (lo he comentado en repetidas ocasiones) , o que vaya calando -incluso entre los propios docentes- que la matemática que se ofrece fuera de la escuela (en manos de startups, franquicias de métodos, ...) no pueda darse, y con más calidad, dentro de la escuela...

¿Hemos desarrollado los docentes de matemáticas suficientemente las competencias que perseguimos desarrollar en los/as niños/as?¿O no es necesario que un docente de matemáticas haya desarrollado previamente competencias matemáticas?

Bueno, no quiero alargarme. Lo que sí es cierto es que instrumentos como los del proyecto MATE.TIC.TAC ya preparados y flexibles, "prêt-à-porter", pueden facilitar en gran medida la docencia en matemáticas, aunque éstas no se hayan "vivenciado" suficientemente. Dado el elevado potencial didáctico implementado en su desarrollo, es fácil transferir eficazmente gran parte de esta "energía potencial" a la enseñanza-aprendizaje.

Y para acabar, algo que recojo en la Guía Didáctica de MATE.TIC.TAC:

Algunos docentes me han manifestado que con estas aplicaciones ellos/as aprenden a la par que sus alumnos/as. Y así debe ser, y no es motivo de pudor ni de considerarse un docente mediocre. Como ya se refirió anteriormente, estas aplicaciones refuerzan también el rol del profesorado y apoyan enormemente la tarea de la enseñanza sin quitar protagonismo a los docentes, facilitando que incluso docentes con poca formación sean protagonistas de una enseñanza de calidad, se sientan seguros y más expertos en la materia. Soy consciente de que muchos de los docentes que imparten el área de matemáticas, por razones diversas, no han tenido la oportunidad de vivenciarlas, de recrearlas, de descubrir sus conexiones y la diversidad de sus procedimientos y métodos en cada uno de los bloques de contenidos… Si no se ha ”vivido” la Geometría, por ejemplo, se tendrán pocas expectativas en relación con este bloque… y se acabará haciendo lo de siempre, algunas actividades de simple reconocimiento…
 MATE.TIC.TAC va dirigido, en primera instancia, al profesorado ayudándole a tener una visión amplia, rica e innovadora de la matemática curricularmente relevante. Facilita los instrumentos para implementar una enseñanza-aprendizaje de la matemática acorde con esa visión. En este sentido tiene, también, un alto valor formativo para el profesorado. El proyecto debe considerarse, siempre, una propuesta abierta supeditada al profesorado, que debe gestionarla e integrarla de la manera más eficaz para su grupo-clase.



15 junio, 2020

Conflicto cognitivo. ¿Solo para alumnos/as?

Engranajes o ruedas dentadas. Proyecto MATE.TIC.TAC


-“No sé, no me suena mucho a matemáticas para Primaria. No me parece demasiado adecuado. ¿No es muy complicado?…”

Algo así me comentó, a bote pronto,  un colega docente, con más de 10 años de experiencia en la enseñanza de las matemáticas en 3º ciclo, al presentarle “Ruedas dentadas” como aplicación para alumnos/as a partir de  5º-6º  de Primaria. A lo que yo le respondí, algo muy parecido a esto:

-“No dudo en que les va a crear el necesario conflicto cognitivo. A ti parece habértelo creado, o al menos cierta extrañeza… Soy consciente de que es una propuesta poco o nada frecuente. Pero ten en cuenta que los contenidos que se trabajan en matemáticas, los problemas, los contextos, las imágenes, etc… siguen estando muy condicionados por una larguísima tradición impresa y por lo que sobre el papel se puede mostrar, ilustrar y proponer

Eso es lo que habitualmente la mayoría de docentes considera “apropiado” en tanto que frecuente y conocido…Es lo que está en su zona de desarrollo próximo y no le causa ni extrañeza,  ni conflicto cognitivo… Evidentemente, sobre el papel, no se puede proponer un sistema de ruedas dentadas perfectamente acopladas cuyo movimiento se puede iniciar, detener o reanudar a voluntad accionando los botones de un cronómetro…¡Pero qué maravilla que esto sí se pueda realizar con el uso de tecnología!


Si lo consideras desde el punto de vista del desarrollo de subcompetencias matemáticas, tendrás que admitir que contiene elementos que favorecen un conflicto cognitivo y el andamiaje necesario para facilitar el enfrentamiento de los conocimientos previos con los aquí involucrados: división de la circunferencia en partes iguales, ángulos correspondientes a una vuelta completa o a fracciones de vuelta, divisibilidad (¿cuándo coinciden las ruedas acopladas en sus posiciones iniciales?), medida del tiempo, valoración de errores en la medida actitud científica de verificación de hipótesis, proporcionalidad directa (en ruedas dentadas acopladas, a doble número de dientes corresponde un tiempo doble en completar una vuelta), proporcionalidad inversa (en ruedas dentadas acopladas, a doble número de dientes corresponde una velocidad de giro mitad …), formas alternativas de expresar la velocidad de giro (vueltas/minuto, rpm,…),... 

Mi colega seguía haciendo de abogado del diablo.

- Cuando digo que no me parece demasiado apropiado es porque quizá las ruedas dentadas o engranajes no son demasiado familiares para los/as alumnos/as de Primaria.

- Bueno, puede que no sea muy familiar pero tampoco es algo extraño. Los piñones de una bicileta son ruedas dentadas. Muchos relojes analógicos muestran su maquinaria, en la que se observan engranajes. El engranaje es un símbolo frecuentemente utilizado para referirse a la tecnología. Están presentes en no pocos juguetes y no digamos del sinfín de construcciones humanas en las que se utilizan...La rueda de tres dientes tiene forma de  "spinner", muy conocido por todos ellos y, antes de pasar a los retos propuestos, se propone, a modo de juego, acoplar adecuadamente una cantidad variable de "spinners" para que giren y visualizar una construcción geométrica móvil... Además, no todos los contextos adecuados tienen que ser necesariamente familiares. Pueden extraerse, también, de la propia matemática...Lo importante es que resulten atractivos y sugerentes, que faciliten el despliegue de actividades matemáticas relevantes, que tengan potencial didáctico...

Date cuenta de los contenidos propios del 3º ciclo que se pueden trabajar aquí interconectados… ¡Ese es el camino para el desarrollo de verdaderas competencias matemáticas! Además, se repasan conocimientos previos y se va graduando la dificultad de los retos propuestos…”

- ¿Cómo has diseñado tantos engranajes diferentes y compatibles entre ellos? Su acoplamiento es perfecto...

-Pues haciendo usos de mis competencias matemáticas, sobre todo geométricas (el dibujo es el principal y más importante procedimiento de la Geometría). Pero requiere cierto dominio de la trigonometría. Diseñar un sistema de engranajes como éstos sería un reto interesante para alumnos/as de Bachillerato...

Y es que aún hoy, nuestra concepción de lo que es la matemática de Primaria está tremendamente condicionada por nuestra propia experiencia escolar y, sobre todo, por la "matemática impresa". Imagino que algún día se valorará en su justa medida el salto cualitativo que supone aportar a la enseñanza-aprendizaje de la matemática métodos, procesos y actitudes, "nuevos paisajes matemáticos", que no siempre son accesibles con fichas ni con libros de texto, ni con otros materiales analógicos... 



30 octubre, 2019

Solitarios y desarrollo de competencias matemáticas en Primaria.




Gamificación, "seriously digital entertainment", "serious game", edutainment",...Muchos son los términos en inglés (así parece que aluden a innovaciones desde cero o a innovaciones más recientes) que se refieren de alguna manera a los juegos que persiguen, a la par, compaginar el entretenimiento con la enseñanza-aprendizaje de contenidos curriculares.

En el caso de la Matemática, ésta ya posee sus propios juegos para tal fin. Y digo propios porque han sido matemáticos (entre ellos no pocos de los más sobresalientes) los que los han analizado exhaustivamente, haciendo uso de herramientas matemáticas, y relacionado con diferentes ámbitos de la misma. Algunos de estos juegos son "clásicos", como es el caso de diferentes juegos de "saltar y comer": Halma, Damas chinas, solitarios,...

Aquí presento cuatro versiones virtuales de diferentes solitarios que cumplen una regla básica sencilla: en cada movimiento en el que intervienen tres huecos alineados consecutivos, la bolita sobre la cual se salta es eliminada del tablero. Por lo tanto el movimiento se realiza siempre en línea recta.

Recomiendo comenzar por el solitario triangular T5, que propone buscar solución a un buen número de configuraciones de bolas, desde 2 a 10, antes de pasar a la resolución completa del juego, con 14 bolas. Estas configuraciones se presentan como retos, secuenciando progresivamente la dificultad de los mismos y potenciando el razonamiento inductivo apoyado en el reconocimiento de configuraciones simples de bolas que sí tiene solución ( o no). Encontrar una solución es lograr dejar una sola bola en el tablero de juego.

La norma básica del juego se refuerza continuamente al impedir movimientos incorrectos de las bolas. Ni por descuido se puede hacer un movimiento incorrecto (algo que sí podría ocurrir con un solitario físico o analógico).

Con cada solitario se incide en mayor o menor medida sobre determinadas subcompetencias matemáticas. Así, por ejemplo, el solitario triangular T4, propone la correcta interpretación de soluciones dadas gráficamente. En el conjunto, se pone de manifiesto la importancia y utilidad de la codificación numérica y gráfica de los movimientos realizados en la comunicación de resultados, soluciones y del proceso seguido...

Estos juegos implican de manera continua la búsqueda exhaustiva de soluciones y variantes, mediante el ensayo y el error, haciendo uso del razonamiento divergente y convergente, de la memoria para visualizar mentalmente y anticipar movimientos y estados que aún no se han producido, y de estrategias propias difíciles de concretar...haciendo posible la comprobación y verificación de conjeturas e hipótesis.

Se da el andamiaje necesario (en forma de ayuda - resolución automática y paso a paso-) para resolver los retos que tienen solución de manera que los/as alumnos/as perciban y valoren su subjetividad frente a la objetividad. Este andamiaje puede ser utilizado en mayor o menor medida, y a voluntad, por los/as alumnos/as, lo que favorece la autorregulación del aprendizajeAdemás, los/as alumnos/as pueden configurar rápida y fácilmente (en el solitario cuadrado y en el solitario estrella pentagonal) sus propios retos, a su medida e interés, eligiendo el número de bolas y las posiciones de las mismas...

Los solitarios elegidos son variantes apropiadas para alumnos/as de Primaria ( a partir del 2º ciclo), tanto en relación con el número máximo de bolas que se manejan en los retos propuestos como en la dificultad. Así, por ejemplo, la variante del solitario cuadrado permite mover y comer a lo largo de líneas diagonales (y no sólo a lo largo de líneas horizontales y verticales). Se reduce así la dificultad del juego al hacerlo más versátil y aumentar notablemente el número de soluciones posibles.

Por último, aunque "solitario" hace alusión a un juego que puede jugar una sola persona, es evidente que estas versiones virtuales tienen mucho juego para ser utilizadas colaborativamente, en pareja o en grupos reducidos que pueden perseguir un mismo fin o reto...

En "Math to Touch" ("Matemáticas para tocar") podemos encontrar una colección de magníficas aplicaciones interactivas de matemáticas. Entre ellas, un solitario triangular T5 como el que se brinda aquí. A pesar de que las aplicaciones son excepcionales, magníficas desde un punto de vista técnico, el/la lector/a comprobará que la mayoría no se adecuan a la etapa Primaria. Así, por ejemplo, el solitario triangular T5 se ofrece en su máxima complejidad (14 bolas y un hueco) y no es posible trabajar con otras configuraciones más sencillas, ni facilita soluciones, etc...Esto pone de manifiesto la importancia vital de lograr una buena integración de pedagogía y tecnología así como de adecuar las aplicaciones y juegos a diferentes edades...

MATH TO TOUCH


21 septiembre, 2019

El teorema de Pick para alumnos/as de Primaria.



El Teorema de Pick (yo prefiero en Primaria hablar de fórmula de Pick) no suele incluirse en el currículo de Matemáticas de Educación Primaria, a pesar de ser enormemente visual y fácil de comprobar, incluso utilizando sólo papel cuadriculado. Los conceptos topológico-geométricos (interior, frontera, área, puntos alineados o sobre una misma recta,...) y operaciones (+,-,x,:) implicados en su comprobación son muy sencillos. Todo ello lo hace apropiado para los últimos niveles de Primaria en los que pocos teoremas se adecuan al nivel de los/as alumnos/as.

Dado que en MATE.TIC.TAC se utilizan mucho las tramas de puntos interactivas para el desarrollo de subcompetencias geométricas, sería un fallo no ofrecer a los/as alumnos/as de 3º ciclo de Primaria la oportunidad de comprobarlo en el cálculo de áreas de figuras con vértices en diferentes tramas, o al menos en la trama ortométrica (en la que suele presentarse casi siempre). Pero, obviamente, no es necesario contar con tramas interactivas para su correcto tratamiento didáctico. Basta con tramas impresas sobre papel y lápices de varios colores.

(La versión que aquí presento es una actualización de esta otra ya disponible en mi blog, desde 2011)

Contribuye a la formación en valores de los/as alumnos/as, como una oportunidad más de constatar que la matemática es patrimonio de la humanidad, que no es algo acabado, y que a ella han contribuido, y contribuyen, muchas mentes, como es el caso de Georg Alexander Pick. Se puede aprovechar el hecho de que Pick fue un matemático de origen judío, nacido en Austria, que murió en el Campo de concentración de Theresienstadt para considerar la realidad humana que subyace detrás de determinadas aportaciones.

Además de conocer un interesantísimo patrón en relación con el cálculo de áreas en situaciones discretas, invita a razonar y justificar el área ya conocida del polígono trazado por procedimientos más generales: dividiendo la figura en polígonos más sencillos y calculando el área total como suma de áreas parciales. Esto último tiene un gran valor didáctico. 

La comprobación interactiva de la fórmula de Pick resulta fácil para alumnos/as de 5º y 6º de Primaria. Didácticamente,como se ha comentado anteriormente, conviene proponer figuras de área conocida, calculada con la fórmula de Pick, por ejemplo, para justificar argumentadamente su área utilizando también otras estrategias.

Se presenta primero la fórmula de Pick en una cuadrícula (o trama ortométrica de puntos). En otra escena, los puntos de una misma trama isométrica pueden ser considerados tanto los vértices de una malla triangular como de una malla rómbica. Elegir uno u otro de estos polígonos unitarios de la malla como unidad de superficie, conlleva multiplicar o dividir la fórmula de Pick por 2. 

Para el caso de la malla rómbica y el rombo como unidad de superficie, las fórmula de Pick coincide con la fórmula para una malla cuadrada o rectangular (A = nI + nF/2 - 1)*. Sin borrar la figura realizada, pero eligiendo la malla triangular y el triángulo equilátero como unidad de superficie, se comprueba como el área viene ahora dada por la misma fórmula, solo que multiplicada por 2: (A = 2nI  + F - 2).

(*) 
nI = número de puntos de la trama en el interior del polígono.
nF= número de puntos de la trama en la frontera del polígono (lados).



31 agosto, 2019

Cruce de ranitas



“…Por esto no es de extrañar en absoluto que muchos de los grandes matemáticos de todos los tiempos hayan sido agudos observadores de los juegos, participando muy activamente en ellos, y que muchas de sus elucubraciones, precisamente por ese entreveramiento peculiar de juego y matemática, que a veces los hace indiscernibles, hayan dado lugar a nuevos campos y modos de pensar en lo que hoy consideramos matemática profundamente seria.”
JUEGOS MATEMÁTICOS EN LA ENSEÑANZA. Miguel de Guzmán
Actas de las IV Jornadas sobre Aprendizaje y Enseñanza de las Matemáticas
Santa Cruz de Tenerife, 10-14 Septiembre 1984
Sociedad Canaria de Profesores de Matemáticas Isaac Newton


Cruce de ranitas” y “Torres de Hanoi” son dos interesantísmos juegos que presentan similitudes. En ambos, el proceso de solución se puede reducir a un procedimiento algorítmico que presenta cierta simetría y recurrencia (un caso más complejo contiene a un caso más simple) y, como diría el gran Miguel de Guzmán, suponen un interesante “entreveramiento de juego y matemática” que se puede trasladar, con el andamiaje conveniente, a alumnos/as de Primaria.

Como se puede comprobar,  no se trata de hacer “jugar” a niños y niñas de modo improvisado, sino de manera intencionada y planificada para lograr resultados (una matematización del juego adecuada al nivel de los/as niños/as). Para ello se facilitan y analizan codificaciones de movimientos que facilitan descubrir los patrones o regularidades que determinan la correcta solución.

En la generalización algebraica del número de movimientos necesarios a partir del número de elementos colocados, en ambos casos, se toma como base el estudio de los códigos, su análisis en elementos más simples, el recuento, la formación de series… Las series numéricas que aparecen son adecuadas para alumnos/as de 3º ciclo de Primaria: 2n (las potencias de 2), 2n-1 (las potencias de 2 disminuidas en 1), 2n (la serie de los números pares o múltiplos de 2) y n2 (la serie de los números cuadrados perfectos).

Ambos juegos son situaciones ideales para aplicar un razonamiento lógico-matemático de tipo inductivo (entiéndase una inducción informal) en tanto en cuanto a partir de la resolución de casos  sencillos se intuye el procedimiento general para la resolución de casos más complejos.

Existen muchas versiones de estos juegos en internet. Las mejores de ellas están realizadas con Flash. Las principales innovaciones tecnológicas que yo aporto son la posibilidad de estudiar las soluciones “paso a paso, permitiendo que los/as niños/as se tomen el tiempo necesario para descubrir patrones, y la codificación instantánea de los movimientos realizados. En otro orden está el personal enfoque pedagógico-didáctico que facilita la matematización de estos juegos en Primaria.