(Código provisional: jgm123)
INVESTIGACIÓN Y DESARROLLO de CONTENIDOS EDUCATIVOS DIGITALES MULTIMEDIA para la enseñanza-aprendizaje de las MATEMÁTICAS (Infantil-PRIMARIA y atención a la diversidad en ESO) y LENGUA en PRIMARIA. Por una enseñanza-aprendizaje de la matemática que integre las TICs con fundamento didáctico, basada en el APRENDIZAJE POR DESCUBRIMIENTO, la ATENCIÓN A LA DIVERSIDAD, el análisis crítico del currículo, el desarrollo de competencias y el fomento de LA CREATIVIDAD.
Resolución de PAEV de nivel 1 y estructura aditiva. Análisis del enunciado. Primer ciclo de Primaria. |
La construcción de la noción de “espacio” constituye una de las bases lógico-matemáticas fundamentales que sirven para estructurar el futuro pensamiento abstracto-formal. Para garantizar la comprensión de los principios fundamentales de la geometría en el futuro es de suma importancia que los docentes, mediante la selección correcta de estrategias de enseñanza y actividades de aprendizaje adecuadas, promuevan el desarrollo de nociones topológicas, proyectivas y euclidianas.
En “La representación del espacio en el niño”, Jean Piaget y Bärbel Inhelder defienden que los conceptos fundamentales y primeros del espacio (como espacio representado y no como concepción global del mismo) no son euclidianos, sino “topológicos”. Es decir, basados en correspondencias que involucran relaciones de proximidad (o de vecindaje), relaciones de separación, relaciones de orden o sucesión espacial (orden lineal y circular), relaciones de envolvimiento y continuidad. Afirman que "el orden genético de adquisiciones de las nociones espaciales, es inverso al orden histórico del progreso de la ciencia", que las relaciones topológicas son consideradas con anterioridad a las proyectivas y euclidianas por parte del niño.
Aproximadamente a partir de los dos años, las relaciones espaciales más sencillas se expresan mediante palabras como: “arriba”, “abajo”, “encima”, “debajo”, “más arriba”, “más abajo”, “delante”, “detrás”,…; dichas expresiones contribuyen eficazmente a alcanzar las nociones espaciales. En esta etapa el niño no puede distinguir, por ejemplo, un círculo de un cuadrado porque ambas son figuras cerradas, pero si las puede diferenciar de la figura de una herradura. Posteriormente logra distinguir líneas curvas de rectas y figuras largas de cortas, así como también diferenciar el espacio interior y exterior de una frontera dada o determinar posiciones relativas al interior de un orden lineal.
Luego aparecen progresivamente relaciones de tipo proyectivo. La geometría proyectiva puede entenderse, informalmente, como la geometría que se obtiene cuando nos colocamos en un punto, mirando desde ese punto. Esto es, cualquier línea que incide en nuestro "ojo" nos parece ser solo un punto, en el plano proyectivo, ya que el ojo no puede "ver" los puntos que hay detrás. Equivale a la proyección sobre un plano de un subconjunto del espacio en la geometría euclidiana tridimensional. Estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida.
Posteriormente, aparecen las relaciones de tipo euclidiano que tratan de la representación de las longitudes, ángulos, áreas y volúmenes como propiedades que permanecen constantes, cuando las figuras representadas son sometidas a transformaciones rígidas.
"Desde siempre, y ahora más que nunca, debe fomentarse el estudio de las matemáticas al mismo nivel que el de la lengua materna, como se hacía antes de que el movimiento “hacer todo sin esfuerzo” se fuera apoderando de las mentes de los legisladores. Profesionales de la nada –terminada en “gogo”− que han conseguido convertir los libros de texto en revistas ilustradas y tebeos de colorines, y convencer a los administradores públicos de que se puede enseñar una materia sin sabérsela, dando instrucciones del método de enseñar lo que sea sin que haya que tener idea de lo que es.
La matemática subyace a todo, es el lenguaje de la Naturaleza. Todos esos avances que percibimos en comunicación, información y previsión, en procesamiento de imágenes y en reconocimiento de patrones, en seguridad, en criptografía, están escritos en esa lengua universal que como la música pertenece a todos y es sustancial a todas las sensaciones. España es hoy una potencia mundial en Matemáticas [...] Nos falta una sociedad concienciada y sensible a lo importante, y un sistema educativo que no confíe la enseñanza de la matemática a los que no han sido, ellos mismos, educados en su metodología; más de la mitad de los profesores de primaria y secundaria en España, no son matemáticos de formación."
Algunos docentes me han manifestado que con estas aplicaciones ellos/as aprenden a la par que sus alumnos/as. Y así debe ser, y no es motivo de pudor ni de considerarse un docente mediocre. Como ya se refirió anteriormente, estas aplicaciones refuerzan también el rol del profesorado y apoyan enormemente la tarea de la enseñanza sin quitar protagonismo a los docentes, facilitando que incluso docentes con poca formación sean protagonistas de una enseñanza de calidad, se sientan seguros y más expertos en la materia. Soy consciente de que muchos de los docentes que imparten el área de matemáticas, por razones diversas, no han tenido la oportunidad de vivenciarlas, de recrearlas, de descubrir sus conexiones y la diversidad de sus procedimientos y métodos en cada uno de los bloques de contenidos… Si no se ha ”vivido” la Geometría, por ejemplo, se tendrán pocas expectativas en relación con este bloque… y se acabará haciendo lo de siempre, algunas actividades de simple reconocimiento…
MATE.TIC.TAC va dirigido, en primera instancia, al profesorado ayudándole a tener una visión amplia, rica e innovadora de la matemática curricularmente relevante. Facilita los instrumentos para implementar una enseñanza-aprendizaje de la matemática acorde con esa visión. En este sentido tiene, también, un alto valor formativo para el profesorado. El proyecto debe considerarse, siempre, una propuesta abierta supeditada al profesorado, que debe gestionarla e integrarla de la manera más eficaz para su grupo-clase.