07 enero, 2016

Divisibilidad en Primaria.








Alusiones a la DIVISIBILIDAD en la Orden de 17 de marzo de 2015, por la que se desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.

Criterio de evaluación (para 3º ciclo de Primaria):
C.E.3.4. Leer, escribir y ordenar en textos numéricos académicos y de la vida cotidiana distintos tipos de números (naturales, enteros, fracciones y decimales hasta las centésimas), utilizando razonamientos
apropiados e interpretando el valor de posición de cada una de sus cifras.


2.10. Divisibilidad: múltiplos, divisores, números primos y números compuestos. Criterios de divisibilidad.2.25. Obtención de los primeros múltiplos de un número dado.2.26. Obtención de todos los divisores de cualquier número menor que 100.
Criterio de evaluación (para 3º ciclo de Primaria):
C.E.3.5. Realizar, en situaciones de resolución de problemas, operaciones y cálculos numéricos sencillos, exactos y aproximados, con números naturales y decimales hasta las centésimas, utilizando diferentes procedimientos mentales y algorítmicos y la calculadora.
2.25. Obtención de los primeros múltiplos de un número dado.2.26. Obtención de todos los divisores de cualquier número menor que 100.

En Primaria se puede afirmar que el primer acercamiento a los contenidos propios de la DIVISIBILIDAD se produce con la construcción de las series aritméticas ascendentes comenzando por el cero, es decir, contando de "tantos en tantos" a partir de cero. Este es el procedimiento de construcción de la serie ordenada de los múltiplos de un número cualquiera.

Si contamos una cantidad de billetes de 5 euros y vamos anotando los valores obtenidos tendremos una serie ordenada de múltiplos del 5. La construcción de la propia serie sirve como estrategia para resolver problemas tales como:
  • ¿Puedo conseguir 35 euros sólo con billetes de 5 euros? ¿Y 42 euros?
  • ¿Cuántos billetes de 5 euros se necesitan para juntar 55 euros?
Si visualizamos la serie de los múltiplos de 60, por ejemplo, encontraremos números terminados exclusivamente en 60 - 20 - 80 - 40 - 00 ...lo que facilita el descubrimiento y expresión de un criterio para determinar si un número determinado es, o no, múltiplo de 60.

Contar de "tantos en tantos" a partir del cero es la base de la construcción de las tablas de multiplicar pitagóricas (que también son las tablas de dividir). Es indudable que éstas han de construirse y memorizarse ya que constituyen un conjunto relativamente reducido de hechos numéricos indispensables para alcanzar competencia en el cálculo multiplicativo. 

En la tradición escolar la primera fase del aprendizaje de las tablas es una tarea totalmente convergente (7 x 5 = 35, factores --->producto), lo cual es lógico. La expresión de esta relación de todas las maneras posibles  es la verdadera expresión de la relación de DIVISIBILIDAD (7 x 5 = 35 --->5 x 7 = 35 ---> 35 : 7 = 5 ---> 35 : 5 = 7 ) y permite introducir el vocabulario específico básico (producto, factor, múltiplo, divisor...) y conceptos ligados a esos términos.

Dado que “divisor” tiene significados diferentes como uno de los términos de una división y como factor de un número, un contexto ideal para la introducción del vocabulario específico de la DIVISIBILIDAD es la división exacta ya que en ella el divisor es realmente factor o divisor del dividendo (lo que no es cierto para la división entera).

Los que apostamos por un cálculo pensado y flexible a partir de la descomposición numérica  vemos la necesidad de adelantar contenidos de divisibilidad para la realización de multiplicaciones y divisiones “por partes”. Nótese, por ejemplo, que la propiedad distributiva del producto con respecto a la suma o resta es una consecuencia directa del hecho de que la suma (o resta) de dos múltiplos de un número es un nuevo múltiplo del número:

  • 6 x 45 = 6 x (40 + 5) = 240 + 30 = 270 (hemos obtenido el múltiplo de 6 deseado – el 270- como suma de otros dos múltiplos de 6)
  • 6 x 45 = 6 x (50 - 5) = 300 - 30 = 270 (hemos obtenido el múltiplo de 6 deseado – el 270- como resta de otros dos múltiplos de 6)

También en la división el dividendo puede distribuirse y permitir una realización de la división por partes en la que todas y cada una de las partes (si la división es exacta) pueden ser múltiplos del divisor o todas menos una (si la división es entera):
  • 153 : 9 = (90 + 63) : 9 = 10 + 7 =17.
  • 154 : 9 = (90 + 63 + 1) : 9 = 10 + 7 + 1/9 = 17 + 1/9.

Es por ello que la multiplicación debe transcender el simple conocimiento y uso de las tablas pitagóricas y ser una búsqueda pensada de múltiplos.


Evidentemente la relación de divisibilidad es reversible. Por eso, a partir de aquí, hay que retomar y enfocar las tablas de multiplicar no sólo en la dirección convergente (factores ---> producto) sino, sobre todo, en la dirección divergente (producto ---> factores) a la par que se “extienden” éstas por ser partes de conjuntos más amplios (cualquier número tiene infinitos múltiplos...).

Buscar dos o más factores para un número es un proceso divergente (creativo), como he mencionado anteriormente. Si hasta este momento el/la alumno/a tenía que saber que 7 x 8 = 56, ahora debe descubrir y formalizar que 56 = 7 x 8; 56 = 4 x 14; 56 = 2 x 28; etc.

Este hecho divergente permite apreciar y obtener ya diferentes formas de agrupar una determinada cantidad de objetos (56 caramelos ---> 7 bolsas x 8 caramelos/bolsa ; 56 caramelos ---> 4 bolsas x 14 caramelos/bolsa; etc.).

A partir de aquí, la progresión en el dominio de la divisibilidad puede seguir diferentes caminos que acaban solapándose unos con otros y reforzándose: