Mostrando entradas con la etiqueta Medida. Mostrar todas las entradas
Mostrando entradas con la etiqueta Medida. Mostrar todas las entradas

12 junio, 2021

COMPARAR Y ORDENAR TRES NÚMEROS. ¿ES FÁCIL?¿ES DIFÍCIL? ¿DEPENDE...?

Ya desde infantil los/as niños/as saben ordenar colecciones de elementos por algún atributo perceptible (ordenar regletas según su longitud, por ejemplo).

Es obvio que la ordenación de tres o más números que tenemos a la vista es algo fácil y rápido de resolver incluso para niños de Primer ciclo de Primaria que conocen el sistema de numeración decimal y, por tanto, un tipo de ejercicio que siempre se propone en Primaria.

Hace unos días, AJ, hijo de un amigo, que cursa 2º de Bachillerato, solicitó mi ayuda porque estaba “atascado” con la realización de un diagrama de flujo que resolviera la ordenación de tres números cualesquiera introducidos por un usuario. Diseñar un procedimiento computacional gráfico bien definido que dé como salida la ordenación de tres números de entrada cualesquiera (en principio desconocidos) es, obviamente, una tarea más abstracta y fuera del ámbito de Primaria. Sin embargo el cerebro que ordena tres números dados visualmente y el algoritmo que ordena tres números introducidos por un usuario en el ordenador, deben operar con bastante similitud.

Si pidiéramos a niños/as de diferentes niveles de Primaria, que ya saben resolver con rapidez y exactitud la ordenación de tres o más números, que argumentaran detalladamente cómo lo han hecho, la exhaustividad, exactitud y generalidad de las argumentaciones dadas variaría mucho en función de los niveles. Y variaría en mucha mayor medida que la variabilidad mostrada en la realización de las ordenaciones. Esto no es de extrañar porque el razonamiento y la argumentación son habilidades cognitivas de orden superior, requieren mayores niveles de competencia.

"Comparando y ordenando pesos con los "freak-animal"", de didactmaticprimaria.net

A continuación se ofrece la aplicación.

21 septiembre, 2019

El teorema de Pick para alumnos/as de Primaria.



El Teorema de Pick (yo prefiero en Primaria hablar de fórmula de Pick) no suele incluirse en el currículo de Matemáticas de Educación Primaria, a pesar de ser enormemente visual y fácil de comprobar, incluso utilizando sólo papel cuadriculado. Los conceptos topológico-geométricos (interior, frontera, área, puntos alineados o sobre una misma recta,...) y operaciones (+,-,x,:) implicados en su comprobación son muy sencillos. Todo ello lo hace apropiado para los últimos niveles de Primaria en los que pocos teoremas se adecuan al nivel de los/as alumnos/as.

Dado que en MATE.TIC.TAC se utilizan mucho las tramas de puntos interactivas para el desarrollo de subcompetencias geométricas, sería un fallo no ofrecer a los/as alumnos/as de 3º ciclo de Primaria la oportunidad de comprobarlo en el cálculo de áreas de figuras con vértices en diferentes tramas, o al menos en la trama ortométrica (en la que suele presentarse casi siempre). Pero, obviamente, no es necesario contar con tramas interactivas para su correcto tratamiento didáctico. Basta con tramas impresas sobre papel y lápices de varios colores.

(La versión que aquí presento es una actualización de esta otra ya disponible en mi blog, desde 2011)

Contribuye a la formación en valores de los/as alumnos/as, como una oportunidad más de constatar que la matemática es patrimonio de la humanidad, que no es algo acabado, y que a ella han contribuido, y contribuyen, muchas mentes, como es el caso de Georg Alexander Pick. Se puede aprovechar el hecho de que Pick fue un matemático de origen judío, nacido en Austria, que murió en el Campo de concentración de Theresienstadt para considerar la realidad humana que subyace detrás de determinadas aportaciones.

Además de conocer un interesantísimo patrón en relación con el cálculo de áreas en situaciones discretas, invita a razonar y justificar el área ya conocida del polígono trazado por procedimientos más generales: dividiendo la figura en polígonos más sencillos y calculando el área total como suma de áreas parciales. Esto último tiene un gran valor didáctico. 

La comprobación interactiva de la fórmula de Pick resulta fácil para alumnos/as de 5º y 6º de Primaria. Didácticamente,como se ha comentado anteriormente, conviene proponer figuras de área conocida, calculada con la fórmula de Pick, por ejemplo, para justificar argumentadamente su área utilizando también otras estrategias.

Se presenta primero la fórmula de Pick en una cuadrícula (o trama ortométrica de puntos). En otra escena, los puntos de una misma trama isométrica pueden ser considerados tanto los vértices de una malla triangular como de una malla rómbica. Elegir uno u otro de estos polígonos unitarios de la malla como unidad de superficie, conlleva multiplicar o dividir la fórmula de Pick por 2. 

Para el caso de la malla rómbica y el rombo como unidad de superficie, las fórmula de Pick coincide con la fórmula para una malla cuadrada o rectangular (A = nI + nF/2 - 1)*. Sin borrar la figura realizada, pero eligiendo la malla triangular y el triángulo equilátero como unidad de superficie, se comprueba como el área viene ahora dada por la misma fórmula, solo que multiplicada por 2: (A = 2nI  + F - 2).

(*) 
nI = número de puntos de la trama en el interior del polígono.
nF= número de puntos de la trama en la frontera del polígono (lados).



27 abril, 2019

Llenado de recipientes y razonamiento numérico proporcional.

Llenado de recipientes y razonamiento numérico proporcional.


¿Y si conectamos un cronómetro a un grifo?

Uno de los los logros terminales más importantes, en relación con las matemáticas de Primaria, es la consolidación del razonamiento numérico proporcional (entiéndase proporcionalidad directa) al final de la Etapa Primaria. No me refiero aquí a saber el procedimiento correcto para resolver una regla de tres directa mediante un algoritmo escrito, o mediante el uso de la calculadora. Me refiero a la capacidad para inferir y calcular mentalmente múltiples resultados nuevos, a partir de algún dato conocido, en situaciones en que dos magnitudes son directamente proporcionales. Esta capacidad se pone de manifiesto, de una manera incontestable, en las tablas de proporcionalidad. En las mismas no se pide la obtención de un solo dato nuevo sino que se generaliza un razonamiento que no tiene fin.

Dada la importancia que le concedo, algunas MACROAPLICACIONES ya publicadas en este blog inciden de una manera especial en  el razonamiento numérico proporcional ("Porcentajes", "Velocidad, móviles y razonamiento proporcional", "Proporcionalidad y semejanza",...), sobre todo utilizando tablas de proporcionalidad y/o colecciones de retos basados fundamentalmente en este tipo de razonamiento numérico, aportando contextos, situaciones problemáticas, simulaciones,...que no suelen  abordarse en Primaria; siempre con un enfoque innovador y creativo, muy alejado de la pura técnica calculatoria predominante...

Esta interesante aplicación persigue, también, la consolidación del razonamiento numérico proporcional, facilitando el andamiaje necesario y guiando el proceso. A la par, se realiza una interesantísima y realista conexión entre las magnitudes CAPACIDAD y TIEMPO. Si un/a alumno/a logra completar tablas de proporcionalidad directa que implican, además, el manejo competente de diferentes unidades de las magnitudes relacionadas, podemos asegurar que ese/a alumno/a ha consolidado el razonamiento numérico proporcional.

02 septiembre, 2018

Capacidad y volumen. Relaciones y equivalencias de unidades




Volumen y capacidad. Relaciones y equivalencia de unidades. Didactmaticprimaria.net



Las aplicaciones ofrecidas por DidctmaticPrimaria tienen, siempre, más potencial didáctico del que aparentan y sugieren sus títulos. Sirva ésta como ejemplo que ilustra la afirmación anterior. 

A partir de agrupaciones ortoédricas policúbicas ( formadas por cubos unitarios de un centímetro cúbico de volumen que se pueden recolocar como se desee) se facilita el descubrimiento de la fórmula que permite hallar el volumen de un ortoedro: largo x ancho x alto.

Además de la manipulación libre (espacio para favorecer el descubrimiento), las propuestas basadas en la generación aleatoria de ortoedros policúbicos permite proponer y resolver retos de cálculo mental multiplicativo (volumen del ortoedro dado).

Se utilizan las regletas de Cuisenaire (o números en color) para realizar agrupaciones ortoédricas de regletas del mismo valor (conexión números-geometría). Éstas se analizan desde el punto de vista de su volumen, a la vez que se estudian los desarrollos planos de las “cajas” abiertas asociadas a cada ortoedro como recipientes cuya área total y capacidad, en mililitros, hay que calcular (agrupaciones ortoédricas – desarrollos planos de ortoedros – recipientes ortoédricos – área total – volumen y capacidad)

De manera análoga a como se tratan los ortoedros policúbicos formados por cubos unitarios, se tratan los ortoedros formados por barras de 10 centímetros cúbicos o por placas de 100 centímetros cúbicos. Se llega, así, a una visión amplia y coherente de la descomposición del decímetro cúbico en 1000 cm3, 100 barra de 10 cm3 y 10 placas de 100 cm3. (Hasta ahora sería como disponer de un decímetro cúbico desmontable y manipularlo desde diferentes puntos de vista…)

A partir del cubo de 1dm3, se construye un recipiente hueco de 1 litro de capacidad. Esto primero se asume como cierto y después se verificará de manera coherente. Se establecen las equivalencias dm3 ≡ litro,  cm3 ≡ mililitro, barra de 10 cm3 ≡ cl, placa de 100 cm3 ≡ dl y se procede a resolver retos consistentes en verter en  el recipiente cúbico (de 1 dm3), con la ayuda de un grifo, un vaso y una jeringa auxiliares, cantidades exactas de agua expresadas en diferentes unidades de capacidad o de volumen.

Pero no sólo llenamos el recipiente cúbico de agua de un grifo. Se utiliza como pluviómetro para establecer las relaciones especiales entre longitud, superficie, capacidad y volumen que permiten su correcto entendimiento. Relacionamos la “boca” de este recipiente (1 dm2) con un metro cuadrado (1 m2). Simulamos de manera realista la lluvia y el paso de tiempo acelerado. Se va registrando automáticamente la altura (en mm) del agua de lluvia , el volumen de agua de lluvia recogido en el recipiente cúbico, las precipitaciones  en litros/m2… Se observa que éste número es el mismo que el de milímetros de altura del agua en el recipiente… Se visualiza, se argumenta, se razona….

En definitiva, se facilita la enseñanza-aprendizaje de una matemática que conecta  e integra conceptos, que facilita enormemente su comprensión profunda favoreciendo la apreciación de patrones y regularidades en contextos matemáticamente relevantes, y realistas, gracias a la calidad visual e interactiva de los múltiples manipulativos que integra de manera innovadora y creativa.

 ¿Se puede ofrecer más en una aplicación de este tamaño?

Ver, también, 


02 diciembre, 2016

Animales de papel. (Midiendo longitudes)

Los alumnos realizan medidas de longitudes utilizando diferentes procedimientos y unidades, registran las cantidades obtenidas en forma de tabla e interpretan los datos de la tabla mientras resuelven retos propuestos...
Desarrollo de la competencia matemática y acercamiento al método científico a nivel básico.

Animales de papel. Midiendo longitudes. Didactmaticprimaria.net