Mostrando entradas con la etiqueta Materiales didácticos analógicos y virtuales. Mostrar todas las entradas
Mostrando entradas con la etiqueta Materiales didácticos analógicos y virtuales. Mostrar todas las entradas

15 octubre, 2015

Muñecos articulados y marioneta. Geometría del cuerpo humano.





El razonamiento espacial actúa sobre figuras geométricas (tridimensionales y planas) por medio de operaciones básicas entre las que destacan el análisis  (descomposiciones diversas de un mismo todo) y la síntesis (combinaciones diferentes de las mismas partes; las mismas partes constitutivas del muñeco articulado pueden combinarse, distribuirse u organizarse de maneras diferentes originando posturas diferentes) teniendo en cuenta la orientación espacial y las posiciones de las figuras en el espacio.

“Muñecos articulados y marioneta” reproduce la geometría esencial del cuerpo humano, del esquema corporal, favoreciendo el análisis y la síntesis para desarrollar tanto un pensamiento convergente (las diferentes partes se organizan para configurar un mismo todo- un mismo muñeco articulado- como divergente (las mismas partes – diferentes segmentos o piezas del muñeco articulado- se organizan formando muñecos que son diferentes –diferentes posturas-), fundamentales  para el pensamiento inventivo y creativo.

Los retos propuestos ponen en juego la observación sistemática, la percepción analítica y la comparación (similitudes y diferencias, grado en que una parte es diferente a su homóloga…).

“Muñecos articulados” presenta menos dificultad que “Marioneta”. A su vez, en “Muñecos articulados” se han contemplado dos niveles de dificultad (cada uno de ellos con 30 retos diferentes).  La diferencia entre una parte del muñeco que hay que modificar (girándola) y su homóloga en el muñeco estático propuesto– estado final al que hay que llegar- viene dada por un giro de un determinado valor. Para facilitar la correcta y exacta resolución de los retos propuestos, los giros posibles toman valores discretos (amplitudes angulares que son múltiplos de 30°, en el nivel 1, y múltiplos de 15°, en el nivel 2).


Dada la importancia de la figura humana para comunicar (acciones, sentimientos, …), su frecuente uso visual-plástico-artístico en nuestra sociedad y teniendo en cuenta, también, su adecuación al estadio evolutivo del dibujo en niños/as de Primaria, esta aplicación tiene un valor formativo interdisciplinar indudable. Esto la hace especialmente adecuada para su inclusión en UDIs interdisciplinares (Matemáticas-Educación Física-Plástica-Comunicación...)

Algunas ideas: Reproducir, sobre cartulina, las diferentes partes de un muñeco articulado similar al de esta aplicación. Hacer copias suficientes (al menos un muñeco articulado para cada alumno/a). Colorear los muñecos atendiendo a diferentes criterios y unir sus piezas de manera que permitan el giro de cada una de ellas. Elaborar luego, colectivamente, un gran mural que pueda servir para decorar un pasillo o un aula aportando cada alumno/a un muñeco con una postura diferente a la de los demás...

También se podría acompañar cada muñeco de un rótulo indicando la acción u emoción que cada postura sugiere a los/as alumnos/as, después de realizar un torbellino de ideas y consensuar la más adecuada para cada muñeco...

07 enero, 2015

Regletas de Cuisenaire. Versión digital.





Son muchos los vídeos , documentos teóricos y prácticos ("Trabajamos con las Regletas") que ilustran el interés y potencial didáctico de los "Números en color" de Cuisenaire, y relativamente numerosas las versiones digitales que se han hecho de las regletas.


He sido reticente durante años a realizar una versión digital de las regletas de Cuisenaire, sobre todo porque ya existían otras versiones. Curiosamente, todas las versiones que he encontrado, en las que las regletas se pueden desplazar, se basan en la representación plana de las mismas. No sé si esto se ha hecho así intencionadamente por parte de los desarrolladores, en atención a características psicológicas específicas de las edades de los alumnos a los que se destinan, o bien para eludir las dificultades técnicas añadidas que conlleva la representación tridimensional. Me temo que esto último ha tenido más peso en el diseño... Personalmente, yo sólo encuentro ventajas en la representación tridimensional de las regletas. Ésta ha sido una de las principales razones que me ha motivado a realizar esta aplicación, al constatar que existía espacio para la innovación y la mejora…

Me voy a centrar aquí exclusivamente en un análisis somero y crítico de estas versiones digitales desde el respeto y la consideración que merecen sus autores. Con el enfoque implementado en mi trabajo  “Evaluación de Contenidos Educativos Digitales Multimedia _ Matemáticas (CEDMMat)”, todas ellas pueden ser analizadas a la luz del modelo TPACK, es decir, desde el punto de vista de los diferentes grados de intersección o integración, logrados por los desarrolladores de estas versiones digitales, entre tecnología, didáctica-pedagogía y contenidos para asegurar una implementación exitosa de las TIC, entendiendo y aceptando que La tecnología optimiza (o puede optimizar) los procesos de enseñanza-aprendizaje con una compleja interconexión de tecnología, contenidos y pedagogía.

No descubro nada al afirmar que las regletas de Cuisenaire son un excelente material didáctico para la enseñanza-aprendizaje de las matemáticas, o al afirmar que se trata de un material polivalente. En el ámbito de las versiones digitales esto ha sido muy bien recogido en la aplicación “regletas”, de José Antonio Cuadrado. Se trata de una aplicación muy completa en este sentido. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo….

La mayoría de los desarrolladores ha optado por realizar versiones elementales que contemplan exclusivamente la manipulación libre permitiendo obtener y colocar copias en pantalla, una a una, de las diferentes regletas. Éstas pueden presentar dos orientaciones: horizontal y vertical. Generalmente se contempla la atracción o ajuste a una cuadrícula (visible o invisible) para facilitar la colocación y exactitud en la composición realizada. He aquí algunas aplicaciones con las características descritas, todas ellas muy parecidas entre sí:

  • La versión digital desarrollada por Ángel Martínez Recio (Universidad de Córdoba. España) tiene un diseño excesivamente elemental. La manipulación resulta poco atractiva al utilizar regletas muy pequeñas y muy pocas opciones de configuración. Resulta una aplicación pobre atendiendo a aspectos multimedia y a su interactividad.
  • Algo análogo se puede decir de "Regletas de Cuisenaire con Geogebra" realizada por José Manuel Infante. Ni tan siquiera permite clonar regletas. Y es que Geogebra es un muy buen software pero resulta muy limitado cuando se pretende utilizarlo como Flash...
  • La versión digital de NRICH enriching mathematics facilita el giro de las regletas pero hay que elegir siempre regleta antes de colocarla. Al igual que la anterior, no facilita el clonado de regletas del mismo valor y tiene muy pocas opciones de configuración.
  • http://www.escolovar.org/mat_numero_cuisenaire1.swf. Prácticamente igual a las anteriores.
  • NumBlox, de Math Toybox. Con respecto a las anteriores, añade la posibilidad de escribir en pantalla.
  • De la aplicación Mathbars, de MathPlaygroundhe tomado el modo de elegir el valor de la regleta.
  • En un nivel básico de diseño se encuentra también la versión para JClic  realizada por Miren GarraldaEs también muy limitado su potencial didáctico-pedagógico. Se centra en la asociación regleta color - número simbólico, ordenar de menor a mayor, sumar1, descomposiciones alternativas de números sencillos…Todo ello de manera cerrada sin posibilidad de que los niños manipulen con las regletas.
  • La versión de learningmath aporta modo libre y propone, además, algunos problemas. Facilita el clonado de regletas del mismo valor, por simple pulsación, y su colocación en la pantalla de trabajo. Representa un avance con respecto a las anteriores.

En otro nivel más avanzado de diseño nos encontramos con aplicaciones tales como:
  • El Proyecto Medusa ofrece “Los números que suman 10” y “Las sumas dobles”. La primera es bastante mejor desde el punto de vista del diseño multimedia que desde el punto de vista de su potencial didáctico-pedagógico. Considero que se ha realizado un gran esfuerzo para el tratamiento de un contenido muy específico y reducido a través de una propuesta excesivamente cerrada, dirigida y convergente, sin contemplar la manipulación libre….La segunda aplicación comparte características con la primera. Presenta regletas  tridimensionales pero sin la posibilidad de que el alumno realice acciones con ellas. Se utilizan para ilustrar la fase gráfica previa a la realización de actividades simbólicas (con números y signos) que son el verdadero objetivo de la aplicación.
  • Vedoque nos ofrece una versión digital de las regletas con una manipulación no demasiado ágil debido a que no facilita el clonado de piezas del mismo valor y porque las piezas, mientras se desplazan, se ajustan a la cuadrícula. Eso causa el efecto de un desplazamiento discontinuo. Además de la manipulación libre, ofrece 20 interesantes puzles planos. Las regletas nunca presentan el símbolo numérico correspondiente a su valor ni las divisiones en regletas unitarias (blancas), aunque sí se facilita el recuento de unidades de cada una de ellas.
  • Las muy conocidas regletas realizadas por  Gil Gijón Canal, David Cantos Vila y Maximina Fernández Orviz son una aplicación muy completa y elaborada. Muy equilibrada en sus aspectos téncicos y didáctico-pedagógicos. Como única pega, encuentro que, en modo jugar,  propone actividades de completar con valores numéricos que necesitan hacer uso del teclado, con lo que no se adaptan a la pizarra digital al requerir un teclado auxiliar. En este modo, la manipulación no resulta ágil debido a que no facilita el clonado de piezas del mismo valor.
  • Como ya indiqué anteriormente, las regletas de José Antonio Cuadrado son una aplicación muy completa. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Ha cuidado mucho las explicaciones, mediante vídeos. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo…

Encontramos, también, interpretaciones más libres de las regletas y otras aplicaciones derivadas:
  • La versión de la National Library of Virtual Manipulatives, Utah State University es más libre dado que no “respeta” la correspondencia color-longitud propia de las regletas Cuisenaire. Aunque contempla sólo la manipulación libre, permite clonar regletas numéricas de un determinado valor con mucha facilidad…
  • MultipleRepresentations utiliza la regleta unidad y la decena entre otros tipos de representaciones…
  • Fraction bars no utliza las regletas Cuisenaire pero sí “fraction bars” para trabajar las fracciones de una manera muy ágil y eficaz. Si la relaciono aquí es como pretexto para afirmar que aunque las regletas Cuisenaire sean muy polivalentes y permitan ilustrar numerosos conceptos, conviene utilizar, también, diferentes materiales para ilustrar-modelar un mismo concepto. Sería tremendamente aburrido, y poco creativo, utilizar las regletas para todas aquellas situaciones en que resultan adecuadas. 
........................................................................................................

He desarrollado la aplicación "Regletas de Cuisenaire" que ofrezco en este post teniendo en cuenta las virtudes y defectos, a mi juicio, de las anteriormente relacionadas. He pretendido en todo momento hacer rica la configuración de posibilidades en cada uno de sus modos de funcionamiento. He considerado prioritario enriquecer las posibilidades en el modo manipulación libre, favorecer el descubrimiento a través de una manipulación que resulte ágil y atractiva facilitando enormemente el clonado de regletas del mismo valor...

El cubo como unidad de diseño tridimensional ya lo había utilizado anteriormente en otras aplicaciones tales como ortoedroGeneración y codificación de policubos por capas,... La utilización del cubo unitario y de la regleta decena en bloques base 10 también son precedentes de esta aplicación. De análoga manera, he utilizado regletas (sin respetar los valores y colores de las de Cuisenaire) en varias aplicaciones que he realizado sobre fracciones.

Invito a los lectores a que descubran el potencial de esta aplicación y a que me hagan llegar las sugerencias que estimen oportunas.


16 octubre, 2014

Bloques base 10. SND, suma y resta.





Hace ya casi un año que mi estimado colega Pepe Vidal  (de la Sociedad Canaria de Profesores de Matemáticas Isaac Newton) me manifestó que echaba en falta, entre todas mis aplicaciones, alguna dedicada a la suma/resta con bloques base 10...Y me animaba para que la desarrollara...

Tengo que confesar que sentía cierta pereza a hacerlo, previendo las dificultades, con el código de programación, con que me iba a encontrar. Bueno, por fin la he desarrollado y tengo que decir que me satisface el resultado final. 

Dado que en las escenas correspondientes a la suma y a la resta se ofrece un registro interactivo de los pasos realizados ( paso a paso o de manera simplificada) que no es sino un algoritmo natural y flexible para realizar la operación, puede que en un futuro la amplíe con la práctica de dichos algoritmos (ya en la fase puramente simbólica) puestos de manifiesto con la manipulación.

(Aplicación ampliada con fecha 29-10-2014)



He decidido no incluir escenas dedicadas a la multiplicación y la división porque tendrían que reducirse forzosamente a casos muy concretos y sencillos (doble, triple,...división entre 2, 3, 4...) que no suponen una suficiente generalización,  obligando, además,  a reducir progresivamente el tamaño de los elementos móviles hasta hacerlo poco estético y operativo... Además, el hecho de que un mismo material sirva para ilustrar diferentes conceptos no significa que sea el más idóneo, ni el único, para ilustrar esos conceptos. Es conveniente ilustrar un mismo concepto con materiales diferentes. No obstante, a continuación ofrezco unos enlaces a vídeos en los que se ejemplifica el cálculo del doble, el reparto entre 3, etc...







En los siguientes vídeos ,y en otros de arriba, se afirma o se da por sentado que en la resta (por detracción, o por comparación) hay que comenzar a "quitar siempre por las unidades". Se trata de una afirmación general que es contraria a la didáctica de la aritmética mental basada en números en la que las operaciones se realizan de izquierda a derecha poniendo de manifiesto de manera más rápida y clara un valor aproximado de la solución. Así, por ejemplo, 435 - 248 = 235 - 48 (hemos quitado 2 centenas tanto al minuendo como al sustraendo y ya se aprecia que la solución va a ser un valor en torno a 200) = 205 - 18 (hemos quitado 3 decenas tanto al minuendo como al sustraendo) = 200 - 13 = 197 - 10 = 187. 

Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.




En los siguientes documentos, de Jesús Javier Jiménez y Teodoro Yupa, respectivamente, se teoriza y se ilustran  un buen número de estrategias de cálculo mental.



17 septiembre, 2014

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!

03 junio, 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)


14 enero, 2014

Referencias a didactmaticprimaria en el CIBEM 2013

La Sociedad de Educación Matemática Uruguaya organizó en Montevideo, 16 al 20 de septiembre de 2013, el VII Congreso Iberomericano de Educación Matemática.

Cecilia Calvo y David Barba. PuntMat
De alguna manera este blog estuvo presente en el CIBEM gracias a las referencias a sus contenidos realizadas en algún que otro taller (SIMULACIÓN FÍSICA Y COMPUTACIONAL: ESTRATEGIA METODOLÓGICA PARA RESOLVER PROBLEMAS ESTOCÁSTICOS ) y las realizadas por Cecilia Calvo. Fue David Barba quien me lo comentó mientras Cecilia participaba en el Congreso. A Ambos les agradezco sinceramente dichas referencias así como que encuentren en mi blog elementos de inspiración.
Desde aquí os recomiendo su blog: PuntMat.

Me ha gustado mucho, y la comparto en gran medida, la selección de sitios de Matemáticas mencionados en el CIBEM_2013 que ha hecho Cecilia. Algunos de ellos no los conocía y son francamente buenos. Así que los comparto con los lectores de este blog:

013

08 noviembre, 2013

Seminario de Matemáticas Activas

Ramón Galán G. y Ángel Alsina P.
Durante la celebración de las XXXII Jornadas de Enseñanza y Aprendizaje de las Matemáticas organizada por la Sociedad Canaria de Profesores de Matemáticas "Isaac Newton", he tenido la ocasión de conocer, charlar y compartir puntos de vista profesionales, entre otros, con Ángel Alsina y un gran maestro: Ramón Galán (Coordinador de Islas dentro de la Sociedad)

Ramón es un maestro apasionado por la Didáctica de las Matemáticas. Activo, entusiasta, incansable en su labor divulgativa y en su empeño por dotar a la matemática escolar de significados...

Es muy conocido en las Islas Canarias y lleva ya muchos años poniendo todo su saber y entusiasmo al servicio de la formación del profesorado... Le encanta diseñar material didáctico para el franelograma ( y aún más explicar su interés didáctico) y realizar vídeos divulgativos...

Fue Ramón quien clausuró las Jornadas con una originalísima presentación en la que relacionaba sencillos patrones matemáticos y creatividad musical...

Gran parte de su trabajo la presenta en su blog SEMINARIO DE MATEMÁTICAS ACTIVAS, que os facilito a continuación:



(Ver a pantalla completa)


Fue también muy enriquecedor para mí cambiar puntos de vistas con Ángel Alsina (Universidad de Girona) que realizó la conferencia inaugural "¿Cómo desarrollar la competencia matemática desde las primeras edades? Contribuciones de la Educación Matemática Realista (EMR)." y desarrolló el taller Vivir y tocar las matemáticas en educación infantil y primaria.

Como muestra del trabajo de Ángel Alsina, os dejo este documento, en formato .pdf, titulado Educación matemática en las primeras edades desde un enfoque sociocultural, publicado en la revista Aula de Infantil

(En el post titulado Evaluación de Contenidos Educativos Digitales Multimedia _ Matemáticas (CEDMMat)  ofrezco la presentación interactiva que utilicé para el desarrollo de un taller del mismo nombre durante las jornadas de enseñanza y aprendizaje de las matemáticas aludidas)

20 abril, 2013

"Geofraccionador". Taller de fraccionamiento de figuras.


El nuevo recurso que brindo al público en esta entrada surge como evolución de otras aplicaciones centradas en el diseño de figuras sobre tramas de puntos virtuales e interactivas: "Copiar figuras", "Geoplanos", "Geoplano Inteligente", "Áreas de polígonos con vértices en una trama ortométrica", "Área de polígonos con vértices en una trama isométrica", "Pizarras geométricas", y otras...Todas ellas inciden de manera ideal, a mi juicio, en el desarrollo de la percepción espacial - tanto analítica como sintética-, que es a la geometría lo que la comprensión lectora es a la lectura.

Lo esencial en un geoplano virtual no es que represente con mayor o menor realismo los vértices o pivotes ni los "elásticos", a modo de un geoplano analógico. Como ya indiqué en  el post "Tramas de puntos, geoplanos y pizarras geométricas", el interés didáctico de los geoplanos ( sean dibujados, analógicos o digitales) reside en que son modelos finitos del plano, con una geometría finita: un número finito de puntos (puntos de la trama o vértices de la malla), de longitudes de segmentos, de valores angulares, de polígonos; un número finito de valores para el perímetro y el área de éstos,  etc...

Este nuevo recurso, que he bautizado con el nombre de "GEOFRACCIONADOR", está pensado para ser utilizado como "taller de fracciones" (aunque su interés es innegable para el estudio de áreas de figuras por composición/descomposición). Aunque me encantan los materiales didácticos analógicos, creo que no cabe duda del valor añadido que aportan los correspondientes materiales virtuales bien diseñados (ver "Material didáctico analógico vs material didáctico digital"). Así, "GEOFRACCIONADOR" añade nuevas dimensiones y posibilidades a las de materiales analógicos diseñados para la representación y estudio de fracciones, tales como los que aparecen en "eje" ("Espacio Jordi Esteve" página web de materiales manipulativos por la enseñanza de las Matemáticas. Un proyecto del grupo PuntMat: Ana Cerezo, Cecilia Calvo, David Barba y "mirones asociados"):


Espai Jordi Esteve


 Como "geoplano virtual" que es, permite la fácil obtención de polígonos pulsando sobre los vértices del mismo. Para adecuarlo especialmente al fraccionamiento, el polígono unidad (rectángulo, cuadrado o triángulo equilátero) se puede fraccionar en un número variable de partes iguales, variando a la par el número de puntos interactivos que se sitúan en los vértices de cada una de las partes. Además, se pueden trazar varias (hasta 12) figuras_fracciones del polígono unidad con diferente color, desplazables y semitransparentes,  para facilitar su comparación. Esta comparación se puede llevar a cabo por dos procedimientos esenciales: el adosamiento sin solapamiento (que equivale a la suma) y por superposición ( que sirve para ilustrar diferencias así como para captar relaciones de multiplicidad- multiplicación y división-).

La aplicación, además, en modo "manipulación libre", muestra las fracciones numéricas que se corresponden por el color con las fracciones figurativas. Se trata de un "geoplano virtual inteligente" en el sentido de que guarda alguna/s características de los polígonos trazados ( la fracción de la unidad que representan, el número de vértices, la longitud de los lados, etc...). De esta manera favorece el descubrimiento  y expresión de relaciones ( en modo manipulación libre) así como el proponer retos de determinación de polígonos que reúnan determinadas características y su comprobación.

Geofraccionador I

(Pulsar sobre la imagen para abrir la aplicación)



Como ya he indicado anteriormente, el gran potencial de esta aplicación se alcanza en modo "MANIPULACIÓN LIBRE" (tanto del lado de profesores/as como de alumnos/as) cuando se utilizan las características de diseño de la aplicación y el apoyo visual de las figuras para ilustrar, descubrir y expresar relaciones entre fracciones numéricas. 

A continuación se ofrecen algunas imágenes que sugieren el potencial didáctico de esta aplicación:



Ilustración gráfica del concepto "fracciones equivalentes".
Diferentes fracciones del rectángulo unidad. Correspondencia de color entre fracciones gráficas y numéricas.
Diferentes fracciones gráficas del triángulo equilátero unidad para el estudio de relaciones de reunión y multiplicidad entre ellas y expresión de las correspondientes relaciones numéricas implícitas.
Comparación gráfica y numérica de fracciones de una misma unidad. Suma (adosamiento sin solapamiento) y resta (superposición) de fracciones. Predecir el resultado numérico a partir del gráfico para demostrar la coherencia de las operaciones numéricas con fracciones.

Sencillas relaciones de multiplicidad entre fracciones de la misma unidad. Correspondencia gráfico-numérica.







25 noviembre, 2012

Regularidades en el plano. Mosaicos, cenefas, celosías...

En la entrada titulada "Tramas de puntos, geoplanos y pizarras geométricas", se comentaba que un recurso barato y de enorme interés didáctico para trabajar aspectos geométricos a lo largo de toda la Etapa Primaria lo constituyen las tramas (o mallas) de puntos ( la trama ortométrica y la isométrica, fundamentalmente).  Éstas, a efectos prácticos,  pueden ser consideradas geoplanos dibujados. Podemos fotocopiarlas y obtener tantas copias como se desee de las mismas. Permiten abordar numerosas cuestiones de geometría dibujada (el dibujo es el procedimiento específico de la geometría) a lo largo de toda la Educación Primaria.

Entre las cuestiones que permiten abordar, y enlazando con la entrada anterior de este blog, se encuentra el trabajo apoyado en el descubrimiento y aprovechamiento de patrones y regularidades geométricas en relación con el diseño de mosaicos, cenefas, celosías... Puesto que la la geometría dibujada pone de manifiesto aspectos artísticos y plásticos que se sustentan en aspectos matemáticos, podemos aprovechar las tramas de puntos para interrelacionar  Matemáticas y Educación Plástica en Primaria.



25 junio, 2012

Freudenthal y la Educación Matemática Realista (EMR)

Voy a comenzar este post presentando un magnífico applet de Java (tanto desde el punto de vista técnico como el didáctico) que podemos encontrar entre los que ofrece, para la educación matemática primaria,  el Freudenthal Institute (Utrecht University).

Aunque este applet no está en castellano su funcionamiento es bastante intuitivo. Presenta diferentes apartados que permiten desarrollar y consolidar habilidades de visualización, representación e interpretación espacial a partir de modelos geométricos tridimensionales que se pueden girar en el espacio 3D.

Así, por ejemplo,  en la opción "Vrij bouwen" se pueden diseñar libremente construcciones poilicúbicas y estudiar sus diferentes vistas espaciales. En la opción “Draaispel”, el reto propuesto con cada nuevo problema consiste en rotar el modelo policúbico tridimensional hasta que su vista frontal coincida con la silueta ( en negro) dada. En otras opciones hay que construir el modelo cuyas vistas se dan, etc...

Las diferentes opciones que se brindan en este excelente applet permiten ilustrar y  adentrarnos en " el uso didáctico de modelos en la Educación Matemática Realista", en  la correcta interpretación de las situaciones_problema y de los contextos "realistas" en la educación matemática, en la modelización matemática en contextos tecnológicos...Pero, ¿qué es "Educación Matemática Realista"?

27 febrero, 2012

Soportes manipulativos para apoyar la abstracción


En un post de este blog titulado "El lenguaje matemático de la belleza", se mostraban algunos vídeos, como "regalo para nuestro ojos y nuestro espíritu", de Cristóbal Vila. En los mismos nos sobrecoge la sensación de misterio, armonía, belleza y perfección que provoca la simetría dinámica de las formas geométricas...

Considero adecuado iniciar este nuevo post con otro excepcional y sugerente vídeo de Cristóbal Vila:




Desarrollos planos cerrándose para formar poliedros; el poder de la duplicación (potencias de 2) en el famoso problema de los granos de trigo sobre las casillas de un tablero de ajedrez; El problema de los siete puentes de Konigsberg (Euler); mosaicos y partición regular de la superficie; trazado de una curva cicloide a partir de un punto fijo en una circunferencia (rueda) que gira; la belleza sintética de algunas fórmulas matemáticas esenciales (teorema de Fermat,...); la historia de la Matemática a través de los retratos de matemáticos ilustres; el aparato de Galton (o binostato) para el estudio empírico de modelos probabilísticos; el mundo "matemágico" de Mauritius Cornelius Escher; pentominós, juegos y puzzles planos y tridimensionales; estructuras mecánicas de Leonardo da Vinci; los fractales en la naturaleza; la geometría en los objetos cotidianos...

El vídeo, que resume de manera breve y magistral algunos hitos esenciales de la historia de las Matemáticas, sugiere, desde mi punto de vista, la importancia de los soportes manipulativos para apoyar la abstracción de pautas y relaciones...

Los materiales son soportes para los contenidos en tanto en cuanto son "objetos o medios de comunicación que ayudan a descubrir, visualizar, entender y consolidar conceptos fundamentales en las fases de aprendizaje"´. Entre ellos, y ciñéndonos al área de Matemáticas y a los materiales eminentemente manipulativos, podemos distinguir entre manipulables físicos y virtuales.   Tanto unos como otros pueden hacer posible una metodología de las matemáticas cimentada en lo sensorial e intuitivo, incluso en lo experimental o empírico,  en la que cobra fuerza la manipulación de los contenidos que se desean trabajar en el aula (modelos construidos, instrumentos, mecanismos, juegos, materiales polivalentes para construir nuevos modelos...) y en la que se prioricen los métodos, modelos y estrategias sobre los propios contenidos...

19 febrero, 2012

Aproximación frecuencial a la probabilidad

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad.

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

25 octubre, 2011

Material didáctico analógico vs material didáctico digital

Un aspecto importante de las TICs es que hacen posible la compensación de carencias, de desigualdades educativas...permitiendo que centros pobres, con pocos recursos, puedan acceder a materiales educativos digitales cuyos correspondientes analógicos no podrían adquirir, al menos en la cantidad necesaria para que la manipulación de los mismos no fuese meramente testimonial. Las TICs permiten conjugar la calidad con el bajo costo.

Así, por ejemplo, adquirir un ábaco-contador analógico de 100 bolas  para cada alumno/a de un determinado nivel, además de ocupar un espacio considerable a la hora de guardarlos, supondría un importante desembolso económico que no todas las administraciones educativas, ni todos los centros escolares, podrían permitirse. Sobre todo si se lleva a la práctica una educación constructivista, que demanda especialmente la abundancia de materiales didácticos diversos (ábacos, regletas, bloques multibase, balanzas, relojes didácticos, geoplanos, juegos de billetes y monedas, juegos de polígonos y poliedros, etc, etc...)



¿Tienen claras ventajas los materiales didácticos  analógicos sobre sus correspondientes digitales? La respuesta a esta pregunta dependerá en gran medida del diseño dado al material digital y del grado de interactividad, del lado del usuario, con que cuente.

A.-) Ábaco contador analógico de 100 bolas:




B.-) Ábaco contador digital de 100 bolas:


(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

He aquí una nueva versión que incluye a la anterior


Para este material didáctico, podemos comprobar que todos los usos y manipulaciones didácticas (libres o dirigidas) que se pueden realizar en A también se pueden llevar a cabo en B ( en la opción "manipulación libre") con la misma facilidad ( sólo la "puesta a cero", en este caso concreto, es más lenta en B - al no poder volcar el ábaco hacia un lado, aunque esto es fácil de solventar si se considerara especialmente relevante-, pero con más precisión en la separación de las bolas en B que en A). Podemos ver además que en B las bolas están diferenciadas, de 5 en 5, por el color ( hay también ábacos contadores con 100 bolas diferenciadas de esta manera). Este detalle es de gran relevancia didáctica, pues permite utilizar el cinco como intermediario para la lograr una percepción más rápida de números menores que 10 (descomposición aditiva-sustractiva de números en la que el 5 juega un papel esencial): 7= 5 + 2; 8 = 10 - 2; 4 = 5 - 1; etc...


En B, además, se asocia cada pulsación con el nombre ( oído y escrito) del número formado, con los símbolos gráficos que lo representan ( número y cifras del mismo) y con otra representación gráfica alternativa, lo cual permite el aprendizaje autónomo de manera sensiblemente más eficaz que en A. Pero, además, en la opción "escribe el número" se realiza una propuesta que permite la comprobación de un determinado aprendizaje posibilitado por el material, lo cual es un mecanismo de retroalimentación para el/la alumno/a usuario/a, un mecanismo de regulación de su propio aprendizaje. Esta ventaja didáctica es esencial para un modelo de enseñanza centrado en el alumno, que contemple tiempos de trabajo autónomo o semidirigido, que posibilite el descubrimiento...


Si a las ventajas didácticas de B con respecto a A le añadimos el bajo coste, incluso ecológico, y las ventajas en relación con su puesta en práctica en el aula (rapidez en la disponibilidad y en el cambio de actividad, mayor orden en la clase, facilidad de guardado o almacenamiento, menor deterioro, mayor duración,...), no cabe duda de que B material didáctico digital) ha superado en funcionalidad a A (material didáctico analógico).



(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

De manera análoga podríamos razonar para otros materiales didácticos tales como balanzas (es difícil lograr el equilibrio con una analógica); relojes didácticos (en los analógicos las agujas se mueven a intervalos continuos difíciles de cuantificar. En cambio, con un reloj digital podemos configurar el movimiento de sus agujas de manera que avancen, por ejemplo, de 5 en 5 (segundos, minutos), de 1 en 1 (horas), etc...); geoplanos; etc...