26 abril, 2020

¿TE LO ESTÁS PERDIENDO?




ACCESO GRATUITO E INDEFINIDO A MATE.TIC.TAC ONLINE (inactivo)








  • Si te lo estabas perdiendo porque no lo conocías, te habrás encontrado con una más que grata sorpresa.
  • Si eres docente, lo conoces y lo valoras, compártelo con otros colegas, ponlo en conocimiento de tus alumnos/as, de sus familias...
  • Si lo conoces, lo valoras positivamente y no lo divulgas en tu entorno próximo, será una pena...Se estará desaprovechando una inestimable ayuda...

    Porque ningún otro sitio te ofrece instrumentos tan excelentes como éstos para la enseñanza-aprendizaje de las matemáticas (4-14 años), compatibles con cualquier otro enfoque o método. Porque aquí se ofrece pura excelencia matemática "sin trampa ni cartón", que puede ser tremendamente provechosa para familias, docentes y alumnos/as.

    Además, los múltiples instrumentos de enseñanza-aprendizaje que configuran el Proyecto MATE.TIC.TAC, entre otras muchas características específicas y diferenciadoras, permiten la fácil configuración de tipologías de ejercicios y retos así como del grado de dificultad de los mismos. Incluso padres/madres y hermanos/as mayores pueden proponer y orientar con facilidad el trabajo de los menores... Sirvan como ejemplo los vídeos siguientes:





    Este instrumento se ha diseñado pensado especialmente en países de habla hispana, como alternativa al uso de monedas y billetes del euro. Así, las fichas equivalen a monedas genéricas. Se mantienen, no obstante, valores naturales y decimales correspondientes a las monedas y billetes del euro por ser muy comunes y especialmente apropiados para el cálculo. 





    Invito al lector/a a que visualice el vídeo de arriba atendiendo a:

    • Cómo se facilita la percepción intuitiva de los conceptos con el apoyo de presentaciones gráficas dinámicas, que pueden ser utilizadas para que los/as alumnos/as las verbalicen e interpreten.
    • El valor añadido del modo "manipulación libre" como espacio que facilita a los docentes apoyar sus explicaciones y a los/as alumnos/as descubrir y consolidar conocimientos.
    • Cómo se proponen retos para ser resueltos de manera manipulativa, representando las situaciones problemáticas y verificando las respuestas.
    • La diversidad de situaciones conectadas para favorecer el desarrollo y/o  utilización de un mismo concepto.
    • La generalidad del "Diagrama DmTt" tanto para apoyar la enseñanza y el aprendizaje asistido del cálculo de dobles, mitades, triples y tercios como para la práctica del cálculo (a partir de la descomposición aditiva de los números propuestos, con generación aleatoria, completado asistido, configuración de grados o niveles de dificultad...)
    • Cómo se obliga a adelantar estrategias de cálculo mental (basadas en combinaciones de los operadores x2, :2, x3, :3, +1 y -1) en el juego "DmTt...
    • La generalidad del formativo interactivo para el cálculo mental de dobles, mitades, triples y tercios (con generación aleatoria, completado asistido, configuración de grados o niveles de dificultad...)
    • Etc....

    O esta otra aplicación ("JUEGO DE EQUIVALENCIAS GRÁFICO NUMÉRICAS"). ¿Se puede ofrecer más en una sola pantalla? Dejo el análisis de su interés didáctico, así como de las sutilezas en su interface, a los/as lectores/as interesados/as.


    10 abril, 2020

    MATEMÁTICAS EN CASA.

     Acceso gratuito e indefinido a MATE.TIC.TAC online





    ACCESO GRATUITO E INDEFINIDO A MATE.TIC.TAC ONLINE (inactivo)

     Matemáticas visuales//En casa









    Roberto Cardil, a quien admiro desde hace años por su exquisito e inmejorable trabajo en Geometría, mantiene el sitio web matemáticasVisuales


     Matemáticas visuales// En casaEs profesor de Matemáticas en el IES Alonso Quijano de Alcalá de Henares y está trabajando duro en una propuesta de actividades "En casa", para Secundaria y Primaria,  para estos tiempos de confinamiento; actividades pensadas para el momento actual  tales como construcciones geométricas con materiales que realmente tenemos en casa (pajitas de refresco, tubos de papel, tiras de papel, origami,…), con una bonita presentación y de las que se sacarán conclusiones matemáticas. Además, problemas 'de pensar' de la Primavera Matemática, cálculo mental ...todo ello fiel a su lema de transmitir la belleza matemática (objetivo que obviamente compartimos)
      




    ¡La belleza matemática!¡El arte de hacer a los demás ( docentes, alumnos, familias,…) partícipes de su descubrimiento!

    Y hablando de belleza matemática, de lo mucho de oficio y  también de arte  que tiene la enseñanza no rutinaria de la matemática,  de lo mucho de investigación y descubrimiento que debe  acompañar al desarrollo de competencias matemáticas en todas las etapas y niveles, os presento un vídeo correspondiente a la aplicación " ¿De cuántas formas?". La aplicación está incluida, evidentemente,  en el proyecto MATETIC.TAC. Permite  acercar cuestiones combinatorias de tratamiento poco usual en las matemáticas de Primaria (pero no por ello menos relevantes), a partir de los 8 años… Cuenta con potentes modelos gráficos interactivos que hacen muy intuitivas, y experienciales, interesantes conexiones geométrico-numéricas...

    Y es que no nos podemos quedar en la matemática de la superficie, de los lugares comunes, de la rutina...Así, por ejemplo, en Geometría casi todo lo que se propone en Primaria son actividades de simple reconocimiento y clasificación, del tipo "¿Qué figura soy?"¿Debemos conformarnos sólo con que un/a alumno/a de Primaria sepa, por ejemplo, que un pentágono es un polígono con cinco lados, cinco vértices y 5 ángulos interiores? Vemos muy natural descomponer el número 5 de todas las maneras posibles, explorarlo,...¿Podemos proponer también, en Primaria, construir, explorar y descubrir el pentágono como un modelo geométrico del número 5 que puede aportar mucha más información que la propia descomposición aditiva del 5? 

    En esta aplicación, entre otras propuestas, destaca de manera especial, el tratamiento innovador de las combinaciones de n elementos tomados de dos en dos, de tres en tres, de cuatro en cuatro... que se corresponden con lados y diagonales del correspondiente n-polígono (de 2 en 2), con los triángulos posibles (de 3 en 3), con los cuadriláteros posibles (de 4 en 4),...Todo ello resulta fácil de comprender y generalizar mediante los esclarecedores gráficos dinámicos que aquí se implementan... ¡Y además se conecta o interrelaciona geometría y numeración!