Mostrando entradas con la etiqueta manipulables virtuales. Mostrar todas las entradas
Mostrando entradas con la etiqueta manipulables virtuales. Mostrar todas las entradas

01 mayo, 2014

Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI

Los centros educativos son algo dinámico, vivo, cambiante. En mi centro, en concreto, viene cambiando de un curso para otro aproximadamente un tercio del profesorado. De hecho, hemos visto necesaria en este curso escolar la revisión de las líneas metodológicas en matemáticas y, más en concreto, la necesidad de unificar criterios y materiales didácticos en relación con la resolución de problemas (que ya se había manifestado en la memoria final del curso pasado).

Movido por esta necesidad y como consecuencia de las acciones planificadas para lograr mayor coordinación, he organizado de manera interactiva, y siguiendo mis propios criterios, un buen número de aplicaciones que se ofrecen en este blog ( mejorándolas y añadiendo otras nuevas) y que inciden sobre la RESOLUCIÓN DE PROBLEMAS ARITMÉTICOS ESCOLARES. El resultado es un taller bastante amplio y rico que se instalará en todos los ordenadores del centro para poder ser utilizado offline.

Este taller es coherente con las líneas metodológicas para el ÁREA DE MATEMÁTICAS consensuadas en nuestro PLAN DE CENTRO, a la vez que las ejemplifica, materializa y concreta en forma de actividades interactivas para la Etapa Primaria (en lo que a RP aritméticos se refiere). Las 32 aplicaciones TIC que lo configuran abordan de manera NO RUTINARIA e INNOVADORA la resolución de problemas aritméticos  proporcionando una experiencia amplia, rica, atractiva y curricularmente relevante de lo que es 'resolver problemas' haciendo uso de los ordenadores del centro y de las PDIs.





(Taller presentado por primera vez en público en el CEIP. Serafina Andrades, de Chiclana de la Frontera (Cádiz) // Mayo-2014)

(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

No son simples baterías de problemas al uso propuestas a los/as alumnos/as para constatar si saben, o no, resolver determinados problemas. Se han diseñado con un sólida fundamentación didáctica pensando tanto en los docentes como en los/as alumnos/as, para incidir en los procesos claves de la enseñanza-aprendizaje de la RP, proporcionando a los/as alumnos/as el andamiaje necesario para la realización de los retos propuestos.

La riqueza y diversidad de METAMODELOS y MODELOS  procedimentales inciden de manera especial en el análisis/síntesis de la información, el establecimiento de relaciones entre las partes y el todo, la explicitación de la ESTRUCTURA del problema tanto a NIVEL LINGÜÍSTICO (prealgebraico) como a NIVEL ALGEBRAICO (operaciones combinadas), el reconocimiento de situciones problemáticas CONVERGENTES Y DIVERGENTES, el desarrollo del SIGNIFICADO OPERACIONAL, ... 

Este Taller pone de manifiesto que más que la búsqueda de un procedimiento o método que sirva para la resolución de cualquier problema aritmético se persigue y apuesta por la riqueza de procedimientos en la RP. En este sentido, se ha tenido en cuenta la teoría expuesta por José A. Fernández Bravo en METAMODELOS Y MODELOS DE SITUACIONES PROBLEMÁTICAS sobre metamodelos procedimentales en problemas verbalizados con enunciado y pregunta, sobre todo modelos de ESTRUCTURACIÓN Y GENERATIVOS. No obstante, también se tratan problemas no verbales (sin enunciado) y mixtos (con enunciado incompleto o desectructurado)...

Por otra parte, se enriquece la teoría de Fernández Bravo con la incorporación de novedosos metamodelos TIC y la interactividad que permiten ('simulación', 'modelización', 'análisis y síntesis mediante cartulinas multiproblema', 'resolución asistida', etc...). 

Se ha pretendido en todo momento que los problemas o retos propuestos resulten atractivos para los/as alumnos/as. Por lo general se presentan contextualizados con escenas gráficas en las que intervienen niños y niñas en situaciones más o menos cotidianas.

No existe en la red ( o en la nube si se prefiere) algo similar.


Aunque las aplicaciones son muy artesanales, están bastante experimentadas y  muy bien cuidadas en sus aspectos esenciales (interactividad, estadísticas, información al profesorado del interés didáctico,...), la propuesta - como todo lo que ofrezco en mi blog- es susceptible de mejora, ampliación y cambios. Todas las aplicaciones incluidas en este taller (algunas de ellas son, a su vez, macroaplicaciones) están perfectamente adaptadas para su uso con PDI.





26 marzo, 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_III. Del enunciado a la expresión algebraica solución del problema.

En un post que escribí hace ya más de dos años (En busca del significado. Operaciones combinadas en Primaria. ¿Por qué? ¿Para qué?) ilustraba con numerosos ejemplos que la práctica totalidad de las aplicaciones_TIC que tratan las operaciones combinadas lo hacen de una manera descontextualizada ( al margen de la resolución de problemas) y con un enfoque convergente, meramente instructivo (la expresión algebraica es algo dado al alumno, ajena a él; se busca la interpretación correcta única, la correcta decodificación basada en el uso de convenios relacionados con la jerarquía de las operaciones…).

 

Las operaciones combinadas se presentan, efectivamente, como algo dado a los alumnos para que éstos las interpreten pero no como producción o construcción de los propios alumnos haciendo uso del lenguaje matemático en el contexto de resolución de problemas. Si bien la correcta interpretación (decodificación) es necesaria, no es suficiente para desarrollar niveles superiores de competencia matemática relacionada con el dominio progresivo y contextualizado del lenguaje simbólico..



Si además tenemos en cuenta que las soluciones numéricas, en nuestra sociedad tecnológicamente avanzada, son casi exclusivamente dadas como expresiones alfanuméricas (operaciones combinadas) que los procesadores matemáticos de calculadoras, computadoras y otros muchos dispositivos electrónicos resuelven numéricamente, se hace más patente la necesidad de un nuevo enfoque en la didáctica de las operaciones combinadas (que no parecen sostenerse como un tópico matemático aislado e independiente de otros…)

 

Por otra parte, he comentado en diferentes artículos de mi blog que desarrollar aplicaciones TIC sobre resolución de problemas consistentes en baterías de problemas con comprobación de la solución (entendida como un número) no supone un gran avance con respecto a una batería de problemas propuestos en material impreso (o en algún formato digital equivalente). Las aplicaciones TIC sobre resolución de problemas deben ir más allá, buscando incidir interactivamente en el meollo del proceso de resolución…



El modelo de resolución de PAEV que propone esta nueva aplicación pone el énfasis en la producción, por parte de los alumnos y alumnas, de expresiones algebraicas (operaciones indicadas) que pueden considerarse ya soluciones del problema. No obstante, la aplicación, para cada problema diferente, evalúa tanto la expresión algebraica producida como el número dado como solución... Evidentemente la aplicación implementa un nivel deseable para alumnos del tercer ciclo de la Etapa Primaria. Además, aunque no se expliciten las relaciones entre magnitudes (análisis y síntesis) éstas han de realizarse ineludiblemente para poder resolver correctamente el problema propuesto. Es por ello que se recomienda que antes se hayan trabajado otras aplicaciones que pongan de manifiesto el análisis síntesis en la resolución de PAEV, como las que se tratan en post anteriores a éste en este mismo blog.

 

Basta experimentar con la aplicación para darse cuenta de que el paso o traducción de las relaciones implícitas en el enunciado del problema a su expresión algebraica no es precisamente un proceso convergente. Muy al contrario, se trata por lo general de un proceso divergente y, por tanto, creativo Para ilustrar esta afirmación podemos analizar un ejemplo:



Las siguientes expresiones algebraicas, entre otras, serían respuestas válidas atendiendo a las restricciones que impone la aplicación (la expresión algebraica sólo puede utilizar datos presentes en el enunciado, es decir, no puede contener números que sean resultado de un cálculo previo con datos; un determinado dato, por lo general, aparece una sola vez en la expresión,… ):
1.-  ((49 x 10) : 280) : 7
2.-  ((10 x 49) : 280) : 7
3.-  ((49 x 10) : 7) : 280
4.-  ((10 x 49) : 7) : 280
5.-  (49 x 10) : 280 : 7
6.-  49 x 10 : 280 : 7
7.-  49 x 10 : 7: 280
8.-  (49 x 10 : 280) : 7
9.-  (49 x 10 : 7): 280
10.- 49 x (( 10 : 7): 280)
11.- 49 x (( 10 : 280): 7)
Lo primero que salta a la vista es que podemos hacer uso exclusivamente de paréntesis estrictamente necesarios o bien utilizar también paréntesis “personales” que sirven para reforzar la consideración de una determinada cantidad de una magnitud creada durante la fase de análisis/síntesis que no aparece de forma explícita en el enunciado del problema o bien para dar cuenta de la estrategia seguida para llegar a la solución…

Mientras que en 1, por ejemplo, se ha calculado primero el arroz total que corresponde a cada persona durante una semana, en 3 se ha calculado primero el arroz total que corresponde a todo el campamento en un día… Personalmente, encuentro que las expresiones 1 y 3 son más significativas que sus correspondientes 6 y 7, respectivamente. Y esto es, precisamente, porque hacen uso de paréntesis que aún no siendo estrictamente necesarios sí que aportan significado.

Es precisamente la economía de paréntesis la que puede dar problemas y la que da origen a convenios en la realización de determinadas secuencias de cálculo, como se ilustra en la imagen. La aplicación da por válida la expresión 49 x 10 : 280 : 7. Sin embargo puede que el alumno no realice correctamente la secuencia de cálculos. Es por ello que la aplicación también comprueba el valor numérico de la expresión algebraica.

Desde un punto de vista técnico, contemplar la divergencia en las respuestas correctas dificulta considerablemente el código y diseño de la aplicación… Pero merece la pena una aplicación así ya que favorece especialmente que el problema sea captado de manera global haciendo más patente la estructura del problema.

Los problemas que se proponen en esta aplicación manejan datos numéricos realistas y coherentes con las situaciones problemáticas presentadas. Se pretende, además, que los alumnos realicen los cálculos en línea, no en columnas, sobre la propia expresión algebraica. Para ello, se ha habilitado una zona de escritura “a mano”, que puede utilizarse tanto para ensayar la expresión algebraica solución como para realizar los cálculos.

Cuando se utiliza en clase, con la PDI, es necesario que los niños y niñas realicen el análisis/síntesis del problema y justifiquen oralmente el proceso de resolución seguido. 

Una aplicación que complementa perfectamente a ésta es "ASOCIA":







09 febrero, 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_II

Voy a comenzar este post  presentando un fragmento literal de un valioso documento (una tesis doctoral) titulado “Sobre habilidades en la resolución de problemas aritméticos verbales, mediante el uso de dos sistemas de representación yuxtapuestos”, de JOSEFA HERNÁNDEZ DOMÍNGUEZ (Curso 1996/97. CIENCIAS Y TECNOLOGÍAS (Páginas 18 y 19). Servicio de publicaciones de la universidad de la Laguna)

El problema, en el que centramos nuestra investigación, tiene que ver con el conocimiento de las dificultades, que experimentan los alumnos en la resolución de los problemas aritméticos verbales, y la influencia que el uso de sistemas de representación gráfica tiene en la mejor comprensión de los mismos. La falta de habilidad de los estudiantes en la resolución puede estar relacionada con múltiples factores, como la no comprensión del enunciado del problema, debido a no haber adquirido un grado suficiente de capacidad de lectura, un dominio insuficiente del significado de las operaciones, una falta de capacidad para razonar en un problema concreto, la incorrecta ejecución de las operaciones o no saber el orden en que éstas (si son varias) ha de seguirse.


Al mismo tiempo, los profesores expresan sus propias dificultades al tratar de desarrollar el aprendizaje sobre la resolución de problemas.

Unos se inclinan por enseñarles a buscar palabras clave, otros enfatizan la lectura comprensiva del texto, otros llegan incluso a utilizar la plástica o la dramatización como elementos que faciliten la comprensión, pero el sentimiento general que expresan sigue siendo el de no tener claro el camino a seguir….


Desde principios de siglo, psicólogos y educadores matemáticos han tratado de investigar las causas de estas dificultades; unos las han atribuido a déficits lingüísticos, otros a dificultades aritméticas específicas. La forma de la enseñanza es otro factor clave. Nuestras escuelas inciden fuertemente en los algoritmos y menos en el desarrollo de estrategias y en la maduración de procesos cognitivos superiores, tales como el nivel de razonamiento y la comprensión conceptual. La típica pregunta que hacen muchos alumnos en el aula cuando se enfrentan a resolver un problema aritmético verbal, “¿tengo que sumar o restar?”, refleja el objetivo de los problemas aritméticos escolares: la elección de una operación y su ejecución como fin fundamental de los mismos. Y, finalmente, aunque menos investigadas, las variables afectivas, que ahora han emergido con mucha fuerza, tienen también algo que aportar sobre las dificultades en la resolución de problemas…
Creo que una gran mayoría de maestros /as estará de acuerdo con este diagnóstico sobre la situación en torno a la resolución de PAEV.

Puesto que en los PAEV el enunciado verbal en que se presenta el problema no separa a éste en sus partes constituyentes, el trabajo con el problema comienza con la lectura comprensiva de su enunciado (texto-problema) que debe llevar a una primera descomposición del texto y al aislamiento de datos e incógnita salvando las dificultades derivadas de los aspectos sintácticos del enunciado:

El tamaño del problema, que se puede medir por el número de caracteres, palabras o frases. 
La complejidad gramatical, entendida como el número de sustantivos, adjetivos, pronombres, etc, o al tipo de oraciones y proposiciones que constituyen el enunciado del problema. 
La presentación de los datos mediante números, símbolos o palabras. 
La situación de la pregunta en texto del problema, que podrá dar lugar a situaciones diferentes: situaciones en que están bien explicitados los tres elementos del enunciado:
          1. Canónicas: son del tipo [ a + b = ? ] 
          2. No canónicas: del tipo [ a + ? = c ] o [ ? + b = c ] 
O bien, situaciones que no están correctamente explicitadas, como por ejemplo que el texto completo sea una interrogación en la que se entremezclen tanto la información como la pregunta del problema. (Diferentes estudios vienen a demostrar que problemas así formulados son más difíciles de resolver)
La explicitación de la relación semántica entre los datos y la incógnita, la presencia de datos o no en la pregunta del problema, la existencia de datos irrelevantes,...
El orden de presentación de los datos en el texto del problema, que se puede corresponder, o no,  con el orden en que éstos han de ser considerados a la hora de efectuar la operación. 

Pero, ¿cómo se puede controlar mediante una aplicación TIC - que favorezca el trabajo autónomo o semidirigido- que el alumno ha llevado a cabo satisfactoriamente esta lectura analítica? En esta aplicación, para cada problema, se proponen cinco afirmaciones relativas al enunciado del mismo en las que el alumno/a debe decidir si son verdaderas o falsas…Esta fase previa a la realización del problema obliga al alumnado al análisis del mismo.  La elección realizada por el alumno nos dará una medida de la comprensión del problema. Es evidente que hoy por hoy no podemos desarrollar una aplicación que valore cualitativamente una respuesta libre y abierta a preguntas determinadas. Lo que ocurre, a mi juicio, es que para PAEV de nivel 1, a no ser que adrede dificultemos el texto, puede resultar una tarea un tanto repetitiva. Además una pregunta bien formulada puede tener casi tanta complejidad sintáctica como el propio enunciado del problema…
De cualquier forma, resulta imprescindible provocar que un alumno traduzca el problema con sus propias palabras obligándole a mencionar, al hacerlo, los datos y la incógnita del problema.
La aplicación permite tachar datos innecesarios del enunciado del problema, subrayar datos e incógnita con diferentes colores, rodear palabras clave…

En “La instrucción en PAEV: Marcos, ideas y sugerencias ” Luis Puig y Fernando Cerdán nos advierten, ilustrándolo con ejemplos concretos, de ciertos peligros en relación con el uso de palabras-clave (más que, menos que, tantos como, más joven, más grande, caro, barato) y exponen diferentes criterios y puntos de vista interesantes en relación con la traducción entre diferentes representaciones del problema...

De suma importancia es considerar la traducción entre diferentes representaciones. El enunciado de cada problema se acompaña en esta aplicación de una imagen ilustrativa que lo contextualiza presentando objetos individuales que se mencionan en el problema, pero sin llegar a ser objetos analíticos en el sentido de que no dan cuenta de las relaciones numéricas entre los datos… Por otra parte, sí se posibilita y propone la utilización de un diagrama o esquema abstracto interactivo (representación evidentemente más provechosa que la mera ilustración) que permite reflejar fielmente las relaciones entre los datos y la incógnita y supone una nueva posibilidad de traducción entre diferentes representaciones del problema. Se trata de esquema todo-partes que se adecua a las diferentes tipologías de problemas de una sola operación de estructura aditiva (combinación, cambio y comparación) con la condición de que se asigne el significado correcto a cada parte en el contexto del problema, que se establezca la correcta dependencia semántica entre las proposiciones del texto.





(Ver a pantalla completa)
(En breve pienso publicar en este blog otra aplicación como esta para problemas de estructura multiplicativa de una sola operación))

Una vez superada esta fase del problema,  el análisis continúa  con la correcta colocación de las etiquetas de texto y la correcta selección de la operación a realizar. Todo ello previo a la realización de cálculos.

Cuando el análisis del contenido se realiza con problemas de varias operaciones hay que ir más allá de separar datos e  incógnita y de repetir por trozos el contenido del problema. Será necesario descomponer en partes, investigar cada parte, comparar unas partes con otras y determinar sus relaciones mutuas.

La aplicación que sigue es una variante de las presentadas en Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_I, para problemas de dos o más operaciones,  que refuerza de manera especial la distinción entre la expresión de la estrategia fundamental de resolución del problema y el desarrollo de ésta. A la par, apunta de manera más directa a la relación isomórfica entre estructura prealgebraica y expresión algebraica_solución del problema. (No obstante estoy trabajando actualmente en otra aplicación, en esta línea, que tenga mayor generalidad y se adecue a mayor número de PAEV de dos o más operaciones).

22 julio, 2012

Simulaciones de móviles con velocidad constante y razonamiento matemático en Primaria.

Razonamiento matemático con móviles. Educación Primaria.
Desde didactmaticprimaria.com, se ofrece  un nuevo recurso educativo digital.
Como complemento a la lección interactiva ofrecida en la entrada anterior de este blog (Métodos especiales de resolución de problemas aritméticos. Problemas de móviles en Primaria.), y siguiendo las consideraciones didáctico metodológicas que en la misma se hacen, he desarrollado esta nueva aplicación que va dirigida, como nivel/es de referencia, a alumnos/as de 10 años (5º de Primaria) en adelante.

En la concepción teórica e implementación técnica de esta aplicación subyace el enfoque de "educación matemática realista", basada en la resolución de problemas (o retos). Toma como base teórica los trabajos de Vigostky, quien sostiene que el aprendizaje no está supeditado al desarrollo, sino que éste puede ser potenciado por las prácticas de enseñanza (tradicionalmente no se tratan en Primaria problemas de móviles sino que se postponen para Secundaria y, además, se resuelven de manera algebraica, haciendo uso de las ecuaciones. Aquí, en cambio, se utiliza fundamentalmente la experimentación -simulación-, el razonamiento numérico proporcional que todo alumno tiene en mayor o menor grado, las operaciones básicas y métodos aritméticos y gráfico-geométricos). Teniendo en cuenta las conceptualizaciones de Vigostky en torno a la zona de desarrollo próximo, las simulaciones (o modelizaciones)  constituyen un inmejorable andamiaje intuitivo sobre el que apoyar el razonamiento matemático que permite resolver los numerosos retos propuestos...

Los modelos interactivos pueden ser utilizados para que los alumnos/as hagan sus hipótesis, expresen sus argumentos, adelanten soluciones aproximadas o exactas y verifiquen lo acertado o no de sus conjeturas.


Requiere, como único conocimiento previo, el concepto intuitivo de velocidad que los/as alumnos/as de estas edades tienen (derivado de la frecuencia de su uso social en competiciones, carreras, automóvil familiar, etc...). Puesto que se trata de una magnitud que expresa, a su vez, la relación entre dos más sencillas (espacio recorrido y tiempo empleado), conviene profundizar en el significado de esta relación, sobre todo en orden a desarrollar el razonamiento numérico proporcional que los alumnos de estas edades poseen em mayor o menor grado. Mientras velocidad y espacio son magnitudes directamente proporcionales, velocidad y tiempo son magnitudes inversamente proporcionales...
No se propone aquí el tratamiento formalizado de los contenidos del bloque de PROPORCIONALIDAD (propio de Educación Secundaria) pero sí se persigue favorecer, como ya se ha dicho, el razonamiento numérico proporcional utilizando diferentes métodos de resolución de problemas aritméticos: reducción a la unidad, uso de tablas de proporcionalidad, métodos gráfico-geométricos...

Comienza enseñándoles a utilizar el cronómetro para medir tiempos con precisión. Además, los botones del cronómetro sirven para controlar el movimiento (iniciarlo, detenerlo, reiniciarlo) de los diferentes móviles (coches, corredora, insectos,..) que se utilizan en las simulaciones. Se invita a los/as alumnos/as a que realicen tantas simulaciones como deseen - manipulación de modelos gráficos interactivos-, calculen las velocidades a las que se mueven diferentes coches que recorren un mismo circuito a diferentes velocidades, o las diferentes velocidades  de varios insectos, etc...; se profundiza, desde varias ópticas, en la simulación y análisis de diferentes problemas de móviles ( cuando marchan en sentidos opuestos para encontrarse; cuando parten en el mismo instante, desde el mismo punto y con velocidades diferentes; cuando parten desde el mismo punto, en la misma dirección pero uno aventaja al otro); etc...

Los retos propuestos (aproximadamente setenta) son realistas, poco rutinarios (no se busca la aplicación mecánica de una fórmula sino el uso del razonamiento numérico proporcional) y variados. 

La aplicación está perfectamente adaptada para su utilización con PDI, pudiendo completarse campos numéricos y de texto haciendo uso de los botones de teclado que aparecen en las diferentes pantallas que lo necesitan. De análoga manera, otras pantallas permiten hacer visible, o invisible, una calculadora. Se informa al instante de lo correcto o incorrecto de los datos introducidos por el usuario.


25 junio, 2012

Freudenthal y la Educación Matemática Realista (EMR)

Voy a comenzar este post presentando un magnífico applet de Java (tanto desde el punto de vista técnico como el didáctico) que podemos encontrar entre los que ofrece, para la educación matemática primaria,  el Freudenthal Institute (Utrecht University).

Aunque este applet no está en castellano su funcionamiento es bastante intuitivo. Presenta diferentes apartados que permiten desarrollar y consolidar habilidades de visualización, representación e interpretación espacial a partir de modelos geométricos tridimensionales que se pueden girar en el espacio 3D.

Así, por ejemplo,  en la opción "Vrij bouwen" se pueden diseñar libremente construcciones poilicúbicas y estudiar sus diferentes vistas espaciales. En la opción “Draaispel”, el reto propuesto con cada nuevo problema consiste en rotar el modelo policúbico tridimensional hasta que su vista frontal coincida con la silueta ( en negro) dada. En otras opciones hay que construir el modelo cuyas vistas se dan, etc...

Las diferentes opciones que se brindan en este excelente applet permiten ilustrar y  adentrarnos en " el uso didáctico de modelos en la Educación Matemática Realista", en  la correcta interpretación de las situaciones_problema y de los contextos "realistas" en la educación matemática, en la modelización matemática en contextos tecnológicos...Pero, ¿qué es "Educación Matemática Realista"?

14 mayo, 2012

Universidad Americana y Manipuladores Virtuales para Matemáticas

La Universidad  Americana (UAM) fue fundada en 1992, por un grupo de catedráticos universitarios de vasta experiencia en el campo docente, investigativo y administrativo, con el propósito de contribuir al desarrollo de la Educación Superior en Nicaragua.  El Consejo Nacional de Universidades (CNU) aprobó oficialmente la UAM el 26 de noviembre de 1992, aprobación que le confirió el debido reconocimiento nacional e Internacional.

Agradezco, desde aquí, a Grettel Chavarría Sánchez, el detalle, que se pone de manifiesto en la siguiente presentación, de considerar ejemplos relevantes de este tipo de materiales los correspondientes a las Bibliotecas de Manipulables_ Virtuales_Matemáticas_Flash que se ofrecen en este blog. No en vano, este conjunto de materiales supera en cantidad, y en adecuación didáctica, a la archiconocida Biblioteca Nacional de Manipuladores Virtuales de la UtahState University

Sólo un comentario al contenido de la presentación: No todos los manipulables virtuales están realizados en Java. Los de este blog está realizados en Flash.

¡Gracias!

MANIPULADORES VIRTUALES

27 febrero, 2012

Soportes manipulativos para apoyar la abstracción


En un post de este blog titulado "El lenguaje matemático de la belleza", se mostraban algunos vídeos, como "regalo para nuestro ojos y nuestro espíritu", de Cristóbal Vila. En los mismos nos sobrecoge la sensación de misterio, armonía, belleza y perfección que provoca la simetría dinámica de las formas geométricas...

Considero adecuado iniciar este nuevo post con otro excepcional y sugerente vídeo de Cristóbal Vila:




Desarrollos planos cerrándose para formar poliedros; el poder de la duplicación (potencias de 2) en el famoso problema de los granos de trigo sobre las casillas de un tablero de ajedrez; El problema de los siete puentes de Konigsberg (Euler); mosaicos y partición regular de la superficie; trazado de una curva cicloide a partir de un punto fijo en una circunferencia (rueda) que gira; la belleza sintética de algunas fórmulas matemáticas esenciales (teorema de Fermat,...); la historia de la Matemática a través de los retratos de matemáticos ilustres; el aparato de Galton (o binostato) para el estudio empírico de modelos probabilísticos; el mundo "matemágico" de Mauritius Cornelius Escher; pentominós, juegos y puzzles planos y tridimensionales; estructuras mecánicas de Leonardo da Vinci; los fractales en la naturaleza; la geometría en los objetos cotidianos...

El vídeo, que resume de manera breve y magistral algunos hitos esenciales de la historia de las Matemáticas, sugiere, desde mi punto de vista, la importancia de los soportes manipulativos para apoyar la abstracción de pautas y relaciones...

Los materiales son soportes para los contenidos en tanto en cuanto son "objetos o medios de comunicación que ayudan a descubrir, visualizar, entender y consolidar conceptos fundamentales en las fases de aprendizaje"´. Entre ellos, y ciñéndonos al área de Matemáticas y a los materiales eminentemente manipulativos, podemos distinguir entre manipulables físicos y virtuales.   Tanto unos como otros pueden hacer posible una metodología de las matemáticas cimentada en lo sensorial e intuitivo, incluso en lo experimental o empírico,  en la que cobra fuerza la manipulación de los contenidos que se desean trabajar en el aula (modelos construidos, instrumentos, mecanismos, juegos, materiales polivalentes para construir nuevos modelos...) y en la que se prioricen los métodos, modelos y estrategias sobre los propios contenidos...