Os ofrezco esta nueva aplicación sobre un contenido que aún no había desarrollado convenientemente.
Está dirigida a alumnos y alumnas del tercer ciclo de la Educación Primaria. También puede venir bien para la atención a la diversidad en ESO.
Fiel a mi estilo, he procurado integrar en ella actividades curriculares relevantes y no rutinarias, que son justamente las que yo realizo con mis alumnos.
Este contenido suele tratarse tradicionalmente con una aridez que causa tedio. En parte, ello se debe a la escasez de situaciones problemáticas propias de Primaria que requieren el uso de potencias (y mucho menos, el uso de raíces).
Al margen de interesantes situaciones constructivo-experimentales que sirven para entender y visualizar conceptos como 'elevar al cuadrado' (serie de los CUADRADOS PERFECTOS) y 'elevar al cubo' (serie de los CUBOS PERFECTOS), o para percibir la 'potencia' de las potencias - como en la leyenda del tablero de ajedrez y los granos de trigo- no existen problemas propiamente de potencias y raíces. Todos los que se proponen en los libros de texto de Primaria son reducibles a hallar el lado de un cuadrado conocida su área, o viceversa.
Es importante tener en cuenta que la didáctica actual de las matemáticas se opone a la enseñanza/aprendizaje del algoritmo tradicional de la raíz cuadrada, por razones obvias. En su lugar, como se hace en esta aplicación, se propone utilizar los significados gráfico y numérico del concepto 'raíz cuadrada' para realizar procedimientos más comprensivos que permitan determinar el valor aproximado de la raíz de un número...
El procedimiento numérico que aquí se propone se apoya en el uso de la calculadora. Requiere saber multiplicar un número (natural o decimal) por sí mismo y comparar el resultado obtenido con otro número (N) cuya raíz se quiere calcular. Es un proceso basado en la estimación en el que se va obteniendo una sucesión de números que se aproximan - por exceso o por defecto- a N, es decir, una sucesión que converge en N (límite de la sucesión). Por este procedimiento el alumnado interioriza que puede aproximarse a N con tanta precisión como desee...
El procedimiento gráfico-numérico de aproximación a la raíz cuadrada de un número que aquí se ilustra es un proceso eminentemente constructivo. Para hallar la raíz cuadrada de un número natural N, tratamos de construir un cuadrado con N unidades cuadradas de área. Se apoya en la serie de los cuadrados perfectos y requiere, como conocimientos previos, el dominio de la equivalencia decimal de las fracciones básicas. Cuando se comprende, permite acotar superior e inferiormente el valor de la raíz cuadrada de N de manera sencilla y en pocos pasos.
Son precisamente estos procedimientos aproximativos los que involucran actividad matemática relevante, y no el hecho de obtener un valor muy preciso de la raíz de un número. Esto último está al alcance de una calculadora, una máquina que no piensa ni razona...
Se aprovechan las potencias de 10 para favorecer la comprensión del número en relación con nuestro sistema de numeración decimal (a través de su descomposición polinómica usando potencias de 10). Más novedosa e interesante es la conexión que aquí se propone entre las potencias y la composición/descomposición multiplicativa de números a partir de factores primos. Se trata de una situación lúdica que conecta con contenidos de 'divisibilidad', que permite desarrollar un dominio efectivo del cálculo con potencias y que favorece el descubrimiento de las propiedades fundamentales de las mismas (que serán estudiadas formalmente en ESO)
Genial! mis alumnos fliparán con esta aplicación virtual, es el paso complementario a la manipulación y construcción real.
ResponderEliminar