Mostrando entradas con la etiqueta Didáctica del cálculo. Mostrar todas las entradas
Mostrando entradas con la etiqueta Didáctica del cálculo. Mostrar todas las entradas

27 mayo, 2013

Kit internivelar para la enseñanza-aprendizaje de fracciones, decimales y porcentajes

Kit Internivelar para la enseñanza aprendizaje de fracciones decimales y porcentajes
kit_Internivelar_Fracciones_Decimales_Porcentajes





Tal y como anuncié en el post  “Fracción de un número y estimación de fracciones sobre la recta numérica” (19 de marzo), he estado preparando una macroaplicación sobre fracciones que al final ha tomado la forma de este “KIT INTERNIVELAR PARA LA ENSEÑANZA-APRENDIZAJE DE FRACCIONES, DECIMALES Y PORCENTAJES”. Este trabajo, que me ha ocupado más tiempo del que yo pensaba, ha sido el responsable del bajo número de nuevos post publicados en este blog desde esa fecha. Todo ello a pesar de que se nutre de algunas aplicaciones preexistentes que han sido revisadas, adaptadas y mejoradas ( como es el caso de la resolución de problemas con fracciones asistida por ordenador). Además se han añadido otras nuevas para hacerlo más completo y útil a su propósito. Aún así se encuentra en “fase beta” ya que sus apartados son susceptibles de ampliación…


A pesar de ello, como puede comprobar el/la lector/a, es profuso en modelos interactivos que se ponen tanto al servicio del profesorado (para apoyar sus explicaciones) como del lado del alumnado (para facilitar la comprensión de conceptos y procedimientos; para ayudar a establecer  relaciones; como base de argumentaciones, etc.) y, a mi juicio ilustra que sigue cabiendo cierta innovación metodológica en un tópico matemático tan tratado como éste y sobre el que existe una gran cantidad de contenidos educativos multimedia excesivamente homogénea... 


 ¿Por qué un  kit como éste? Con frecuencia se observa en blogs de matemáticas que para este tópico (fracciones-decimales-porcentajes), también para otros, se ofrece un popurrí de imágenes-enlace a microaplicaciones de índole diferente (tanto desde el punto de vista de la autoría como, sobre todo, desde el punto de vista de su enfoque metodológico y de su interés y calidad didáctica) con contenidos que a veces se solapan y que favorecen una visión excesivamente rutinaria, fraccionada o incompleta de lo esencial en este tópico. Predominando, por otra parte, los enfoques que ponen el énfasis en lo mecánico que aquellos que apuestan por favorecer el aprendizaje por descubrimiento.


Por otra parte, contenidos esenciales de este tópico (equivalencia de fracciones, fracción de un número, nociones básicas de divisibilidad, cálculo de porcentajes, equivalencia fracción- número decimal-porcentaje) se basan en un pequeño número de conceptos y relaciones que empiezan a abordarse con cierta profundidad en 4º y 5º de Educación Primaria (y se siguen ampliando en cursos posteriores), siendo un correcto enfoque del mismo el tratamiento del campo conceptual de la multiplicación-división orientado hacia el desarrollo del razonamiento numérico proporcional (-que ya traté con profundidad en "velocidad, móviles y razonamiento matemático"- ya que el significado de relación o proporción de una fracción es fundamental), de estrategias de cálculo mental (ya que fracciones y porcentajes sencillos se utilizan con frecuencia en situaciones cotidianas y su manejo  competente involucra las principales estrategias que conforman el sentido numérico) así como de estrategias de representación y modelado gráfico de situaciones problemáticas (que facilitan enormemente la visualización, captación y expresión de relaciones así como el aprendizaje por descubrimiento).

"Largo es el camino de la enseñanza por medio de teorías, breve y eficaz por medio de ejemplos". 

                                                                           Lucio  Anneo  Séneca   

Como complemento a este recurso, me parece adecuado colocar aquí este estudio teórico práctico sobre fracciones-decimales-porcentajes:
  

11 diciembre, 2012

El currículo de matemáticas no es sólo numeración. La numeración no es sólo cálculo.

De nuevo me veo llevado a hacer un análisis crítico de ciertos aspectos en torno al “método ABN” y al correcto enfoque del cálculo en la escuela en relación con las características del cálculo en nuestra sociedad. Soy consciente de que hacer afirmaciones rotundas al respecto nos lleva a un terreno no exento de peligros.
algoritmo ABN
Fuente: "algoritmo abn"

El blog “Algoritmos ABN” es uno de los sitios de referencia para la didáctica de la Matemática en Primaria que relaciono en la parte derecha de mi blog. Y es que estoy totalmente de acuerdo con el enfoque flexible del cálculo que Jaime Martínez Montero ha etiquetado con la marca “ algoritmo abn”.  De hecho, con anterioridad a la aparición de esta marca, una minoría de maestros/as ya veníamos defendiendo y practicando un cálculo flexible alternativo al tradicional, sobre todo desde que a finales de los 90 se multiplicaran las publicaciones que abordaban el tratamiento de algoritmos no tradicionales, de las operaciones básicas, en la escuela.

Por mi parte, vengo desarrollando con mis alumnos un cálculo pensado, flexible y basado en números y he desarrollado múltiples formatos digitales interactivos para divulgar y favorecer la práctica del cálculo (tanto descontextualizada como contextualizada)  bajo este enfoque ("Así calculamos en mi cole") aunque no bajo la etiqueta "abn".

Este enfoque flexible apuesta por el desarrollo de algoritmos no tradicionales de las operaciones aritméticas para evitar las rigideces que presentan los tradicionales. Confiere al cálculo un carácter subjetivo y creativo (frente a "Esta división se hace así", "Yo hago esta división así"). Hace del cálculo una tarea pensada, matemáticamente relevante (algo que no se puede asegurar, sin más, en enfoques más tradicionales) dándole el rango de habilidad cognitiva de orden superior; y se adapta mejor a la diversidad del alumnado presente en las aulas. Y, sobre todo, es más coherente e integrador que el cálculo tradicional ya que aprovecha la natural descomposición/composición numérica de los números y las mismas estrategias y propiedades fundamentales de las operaciones se utilizan tanto para el cálculo que se apoya en lápiz y papel como para el que se realiza  “de cabeza” (que ha pasado a ser, sin duda, el verdaderamente importante)
"Hay otra razón que aboga por la inclusión del cálculo pensado en las clases, y es que la mayoría de las personas que son consideradas hábiles para calcular rara vez hacen uso de los algoritmos usuales, sino que suelen recurrir a manipular los números para facilitarse la tarea."
Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67.
"La tragedia del algoritmo estándar en la escuela, ha llegado de la mano de las calculadoras de bolsillo y de las cajas registradoras.
Lo que para todo el mundo era un elemento crucial de cualquier currículo escolar hace veinte años, ha empezado a ser considerado como algo que va perdiendo importancia al mismo ritmo que aumenta el interés por el cálculo mental y estimativo." 
Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 113.  

El cálculo que realizan la mayoría de las personas en nuestra sociedad actual es un cálculo instrumental (calculadoras, cajas registradoras, computadoras,…). ¿Quién hace cálculos fuera de la escuela con ayuda de lápiz y papel? ¿Significa esto que no tiene ya sentido desarrollar razonables competencias de cálculo en nuestros/as alumnos/as?

No, evidentemente no, puesto que toda capacidad humana debe ser desarrollada. Significa plantearse la naturaleza y tipología del cálculo que tiene sentido desarrollar en la escuela, la magnitud de los números con los que se debe operar y las formas más razonables de abordarlos. Significa un esfuerzo por contextualizar el cálculo así como por el desarrollo de estrategias personales para calcular…Significa priorizar el cálculo aproximado y la estimación. Significa entender bien, de manera integrada y proporcionada, el currículo dematemáticas. 

Tradicionalmente el peso curricular recaía de manera aplastante sobre la numeración, más en concreto sobre los algoritmos de las operaciones básicas.  Se trataba de un currículo de matemáticas ciertamente empobrecido. Este es uno de los aspectos fundamentales que hay que superar. Actualmente tiene menos sentido que nunca que el cálculo (del tipo que sea) acapare la mayor parte del tiempo destinado al desarrollo del currículo de matemáticas en la escuela, sobre todo si se trata de un cálculo predominantemente descontextualizado. No faltan los que abogan por destronar el cálculo de la cima del quehacer matemático en el que se encuentra. Hay que asumir que el currículo de matemáticas de Primaria aborda las cantidades, el espacio y las formas, los cambios y relaciones, así como la incertidumbre. Y que el eje vertebrador de estos bloques es la resolución de problemas. 


"Jaime Martínez, inspector de educación, explorador de algoritmos, ha soñado un mundo sin cuentas. Ha ido más allá. Lo está poniendo en práctica. 225 niños de Primaria de la provincia, entre Primero y Quinto, aprenden matemáticas sin hacer cuentas..."
Cuando uno visita el blog “Algoritmos ABN (que persigue entre sus objetivos explícitos erradicar las viejas cuentas y favorecer una matemática más divertida), observa que casi la totalidad de la ingente cantidad de imágenes y vídeos que en él se incluyen  se centran en cálculos numéricos. Aparentemente se trata de "nuevas cuentas" que se articulan en forma de tablas de números. Sin embargo hay una diferencia notable con las cuentas tradicionales. Desde que se inicia el proceso de resolución, cada fila que se va escribiendo es una igualdad equivalente a la anterior, de manera que no hay que esperar a que el proceso haya acabado para haber transformado de manera coherente el cálculo inicial propuesto: 236 - 189 = 136 - 89 = 106 - 59 = 100 - 53 = 50 - 3 = 47 (para una resta "por comparación"), o 236 - 189 = 11 + 36 ( para una resta "por escalera ascendente"),...

Evidentemente el hecho de que se recurra continuamente a la pizarra o al papel de una ficha o cuaderno no significa que no se trate de un cálculo “pensado”. Otro aspecto a tener en cuenta es que se utilizan algoritmos extendidos, más extensos, que van dando cuenta de cada uno de los pasos realizados. Esto no debe identificarse con una mayor dificultad que los tradicionales (que son “más económicos”) dado que a medida que un alumno progresa en el desarrollo de competencia en cálculo se reduce notablemente el número de pasos que utiliza para resolver un cálculo determinado. No me cabe duda del buen enfoque que se hace en ese sentido, priorizando claramente la comprensión sobre la mecanización y favoreciendo el afloramiento de modos personales de realizar los cálculos.
  
Pero, con sinceridad, siento que los/as maestros/as debemos ser muy torpes cuando parece ser que necesitamos que se nos ilustre hasta la saciedad el mismo método de cálculo para cada uno de los diferentes cálculos posibles (que son, evidentemente, infinitos). En realidad, casi todo se reduce a que tanto la suma, resta, multiplicación y división se pueden realizar “por partes”,  de manera flexible o personalizada ( no necesariamente todos/as los/as alumnos/as en los mismos pasos ni con los mismos números) y basándose en la descomposición numérica y las propiedades fundamentales de las operaciones básicas. Es por ello que el blog aludido transmite visualmente la idea de que el quehacer fundamental en  matemáticas de Primaria es el cálculo. No vemos en el blog ninguna referencia al mundo del espacio y las formas ( a excepción del método para resolver raíces cuadradas), ni al de la incertidumbre …

Podríamos extendernos tanto como quisiéramos en poner de manifiesto (como se hizo desde el origen de las matemáticas) las relaciones entre números y formas, cómo se apoyan y refuerzan mutuamente y cómo fruto de esa simbiosis se ponen de manifiesto con mayor fuerza patrones  o regularidades numérico-geométricas… No tendría nada que objetar si se identifica el “método ABN” con un método de cálculo, como así se presenta habitualmente. Pero es que desde el blog aludido y desde otros, así como desde diferentes medios de comunicación y documentos se hacen afirmaciones (a mi juicio poco rigurosas) más generales que apuntan hacia una inconveniente metamorfosis ( CÁLCULO = ALGORITMOS ABN = "LA SENDA PARA  ALCANZAR COMPETENCIA MATEMÁTICA"). ¿Debe interpretarse como la única senda? ¿Debe interpretarse que la competencia en cálculo es la única o más importante de las competencias matemáticas? Espero que no, porque ello supondría reducir el currículo de matemáticas a simple cálculo, volviendo a incurrir en errores parecidos a los que se pretendía superar… Esto me parece especialmente peligroso en estos tiempos tan tecnológicos en los que curiosamente se exalta más que nunca el desarrollo de la capacidad de cálculo (a veces de manera poco razonable, como si se pretendiera crear "calculadoras humanas") identificándolo con la excelencia en matemáticas.

Me voy a limitar aquí al análisis de algunas afirmaciones relacionadas con la resolución de problemas y con la descripción de las características del "cálculo abn": 
Con la nueva didáctica de las matemáticas que propugna Jaime Martínez se llega a los resultados correspondientes por desagregación o descomposición de las cantidades a operar... (Jaime.M.M)
¿Nueva didáctica de las matemáticas o no tan nueva didáctica del cálculo? 
"Las viejas cuentas son la causa fundamental que impide que los alumnos sepan resolver problemas"(Jaime.M.M)
Uno de los grandes "fallos" en la enseñanza tradicional de la aritmética es que se identifica operación con el algoritmo (cuenta) que la resuelve:
"Nuestro aprendizaje de cada una de las operaciones está tan ligado a su algoritmo que se suele confundir operación con el algoritmo usual que la resuelve" Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67. 
No volvamos a cometer el mismo error (operación ¹ algoritmo de la operación)
Además, desde hace mucho tiempo los maestros nos venimos  quejando de que los alumnos no sepan con qué operación (u operaciones) se resuelve un determinado problema ("¿Es de sumar o de restar?"), en mucha mayor medida que sobre la propia realización de los cálculos. 
"Los algoritmos ABN aumentan notablemente la capacidad de resolución  de problemas" (Jaime.M.M)
¿Cómo? ¿De qué manera? ¿De qué problemas? Porque la realización de cálculos, incluso en los problemas típicamente aritméticos - que no son los únicos-, es una de las fases finales del proceso de resolución, y no precisamente la más relevante. A no ser que se considere como "problema" realizar un determinado cálculo. Esto sólo podría aproximarse a la verdad en los problemas aritméticos más elementales, los de una sola operación, en caso de que se presenten a los alumnos de forma que el "espacio de búsqueda" sea prácticamente inexistente. (Ver "Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV)") 

"Un grupo de investigadores europeos ha visitado recientemente el Colegio San Rafael (Cádiz) para conocer el funcionamiento de este método de cálculo ideado como sabemos por Jaime Martínez, inspector de educación de la Delegación de Cádiz.

Procedentes de distintos países como Austria, Holanda, Alemania, etc. dichos investigadores pudieron comprobar de primera mano los resultados de este revolucionario método que demuestra que los alumnos de primaria mejoran no sólo su nivel de cálculo y su capacidad de resolución de problemas sino también su motivación en el aprendizaje de las matemáticas." [...]

[Fuente: "Las matemáticas de Cádiz". Diario de Cádiz (versión impresa). Fecha: 21/09/2012]

Algoritmos y resolución de problemas
Fuente: "algoritmo abn"
En el blog “Algoritmos ABN”, se hace bastante alusión teórica a la relación entre las operaciones y las tipologías de problemas aritméticos de enunciado verbal (PAEV) que resuelven. Sin embargo este "revolucionario método ABN” no explicita ningún método concreto de resolución de estos problemas. Encontramos casi exclusivamente un modelo de resolución de PAEV, el modelo más tradicional. Con frecuencia vemos imágenes en las que el/la maestro/a ha escrito el enunciado de un PAEV en la pizarra y, a continuación, sin más, el algoritmo extendido con el que se resuelve. Es cierto que se asocia con mucha frecuencia un cálculo concreto con un determinado problema como forma de contextualizar el cálculo, y que incluso se hace una análisis comprensivo del enunciado. Lo peligroso es  asociar el algoritmo con la resolución de un PAEV ( incluso para los problemas más elementales), como se recoge en este texto del propio Jaime M. M. (hablando de la "doble resta" y de la "sumirresta"):

"[...] Aparte del nuevo campo de posibilidades de cálculo que abre, la importancia fundamental de estas operaciones radica en que simplifica enormemente el mundo de los problemas porque convierte, de golpe y sin transición, muchos de ellos de dos operaciones que son difíciles para los niños (todos los de dos restas y todos los de una suma y una resta) en problemas de una operación, simplificando enormemente la complejidad de su comprensión y su realización. Hay siete problemas distintos de sumar y, como vimos hace poco, trece diferentes de restar. Quiere decir que, combinándolos simplemente, nos salen 91 problemas distintos de sumar y restar (13 x 7), y 169 de dos restas (13 x 13). Es decir, que con la doble resta y la sumirresta cambiamos 260 problemas diferentes de dos operaciones en problemas de una operación. ¡Casi nada!


Los problemas de dos operaciones son especialmente difíciles para los niños. No es complicado averiguar por qué y hay una amplia literatura científica que da cuenta de ello. Para nuestro propósito, baste pensar que en un problema de una operación aparecen los datos y la pregunta. En uno de dos operaciones aparecen los datos de la primera operación, pero no la pregunta, mientras que en la segunda operación sí aparece la pregunta, pero solo uno de los datos. Véase el caso siguiente: “Un bosque con 2145 árboles se incendia y arden 368. Después plantan 325 árboles más. ¿Cuántos árboles hay ahora?” Es evidente que la primera operación (2145-368) no tiene pregunta, y que la segunda (1777+325) no tiene el dato de los 1777 árboles.


Por lo anterior, la sumirresta facilita mucho todo el proceso. Es fácil pasar directamente del texto al formato del algoritmo, y luego permite múltiples posibilidades de desarrollar los cálculos de uno u otra manera. La resolución clásica obliga a realizar primero una operación y luego otra, mientras que aquí se pueden abordar los cálculos sucesiva o simultáneamente." 

Aquí se hacen afirmaciones explícitas e implícitas a mi juicio poco rigurosas:
  • Hay operaciones que simplifican enormemente la complejidad de la comprensión de un determinado problema, cuando comprender un problema implica previamente descubrir las relaciones entre las magnitudes y las operaciones que transforman unas en otras...Ahí radica precisamente la esencia del acto creativo que supone la resolución de un problema y ahí radica, por tanto, su dificultad. De nuevo se identifica operación con algoritmo de la operación, que es un útil para efectuar ésta, y parece identificarse la realización del algoritmo con la esencia de la resolución de un problema. No comparto tal idea.
  • Parece que la tipificación de problemas es pura aritmética combinatoria. Aunque estoy seguro de que esa no es la visión de Jaime M.M. al respecto.
  • Parece que el proceso de resolución de problemas aritméticos se limita al paso del enunciado al formato del algoritmo, es decir, del texto al cálculo. Esta peligrosa asociación más que superada en la amplia literatura científica a la que el propio Jaime M. M. alude, supone un  reduccionismo del aspecto más troncal y vertebrador del currículo de matemáticas: la resolución de problemas (RP). Si bien esto se puede hacer fácilmente, aunque no sea lo más conveniente en la R.P, para PAEV de nivel 1(una sola operación), me llama poderosamente la atención lo artificioso que resulta justificar la doble resta y la sumirresta en relación con la resolución de PAEV de nivel 2. Sinceramente, parece un invento para encajar, con calzador, la resolución de estos problemas con un único algoritmo... No creo que sea éste el camino más conveniente en la búsqueda de comprensión. Me parece una senda poco conveniente en la didáctica de RP, máxime viniendo de una persona que apuesta por algoritmos extendidos, aunque sean menos económicos que los tradicionales, para  favorecer una mayor comprensión de los cálculos realizados y el desarrollo de estrategias de cálculo... 
Para terminar: 
Desde una perspectiva holística de las matemáticas, cualquier parte (bloque de contenidos) debe gozar en buena medida de los atributos de la totalidad (currículo de matemáticas) pero no sería riguroso  identificar la parte con el todo ni  el todo con la parte.






01 enero, 2012

Feliz año bisiesto 2012


Aquí reproduzco, de manera aproximada, una de las últimas clases de matemáticas (diciembre de 2011) con mis alumnos/as de 6º de Primaria.

(La mayéutica socrática no está reñida con el uso e integración de las TICs en clase de Matemáticas)



Yo: -¿Sabéis qué tiene de especial el nuevo año que se avecina, el 2012?
C.B. (al instante): - Que es bisiesto.

Yo: -¿Y qué significa el adjetivo bisiesto?
C.B. (de nuevo, al instante. Se esperaba la pregunta): - Que tiene un día más que un año normal.
Yo: -¿Cuántos días tiene un año, A.C?
A.C. (pensándoselo un poco): - 365.
Yo ( dirigiéndome de nuevo a A.C., que se distrae con facilidad): -¿Y un año bisiesto?
A.C. :- Pues un día más, 366.
Yo: -¿Y en qué mes se coloca este día más?
Casi toda la clase: - ¡En febrero!
Yo: -¡Vale!¿Alguien sabe decirme una definición de año?
R.Y:- Pues 365 días, o doce meses...
Yo: -¿Entonces un año bisiesto no es exactamente un año? Me refiero a una definición científica de año...
J.J. ( después de un momento de silencio de la case):- El tiempo que tarda el Sol en dar una vuelta alrededor de la Tierra.
F.J. (corrogiéndolo al instante): - ¡La Tierra alrededor del Sol!
J.J. (dándose una palmada en la cabeza, por su fallo):- ¡Ah, sí! Pero, en realidad, la Tierra tarda en dar una vuelta al Sol 365 días y cuarto. Si ponemos 365 días para un año cometemos un error de 6 horas, que es un cuarto de día. En dos años cometemos un error de 12 horas y en cuatro años un error justo de un día. Por eso cada cuatro años se añade un día al mes de febrero - que es el que menos tiene-, para compensar.
Yo: - Muy bien explicado, J.J. De esa manera se evita que las fechas astronómicas y cronológicas dejen de coincidir. Si no, podría ocurrir que el mes de enero - que sólo tiene que ver con el calendario, con la medida humana del tiempo, coincidiese, por ejemplo, con el verano (que es una estación provocada por la situación de nuestro planeta con respecto al Sol).
C.G.:¡Qué guay!¡Iría a la playa en enero!




Yo (viendo que algunos extienden sus manos con los puños cerrados): - ¿Alguien sabe un procedimiento para recordar los días de cada uno de los meses del año?
P.P: - Sí, con los nudillos de las manos. (Y explica correctamente el procedimiento).
P.D.: - Maestro, los dos meses de vacaciones, julio y Agosto, son de los que más días tienen.
Yo : - Sí, es cierto. ¿Alguien sabría decir lo que es un año marciano?
I.R.: - El tiempo que tarda el planeta Marte en dar una vuelta alrededor del Sol.
Yo : - ¡Correcto!
C.G: - ¿Y cuántos días son?
Yo : - No lo recuerdo. Lo podemos averiguar en Internet. Pero sí os puedo decir que cuanto más alejado está un planeta del Sol, más tarda en dar una vuelta alrededor de él y, por lo tanto, su año durará más días de los nuestros, días terrestres. De la misma manera, los planetas como Mercurio y Venus, que están más cerca del Sol que la Tierra, tendrán años de menos de 365 días terrestres, tambien llamados soles. Se me ocurre que luego lo averigüemos en Internet y hagamos una tabla que recoja la duración del año de cada planeta de nuestro Sistema Solar. Pero, lo que yo quiero ahora es que nos fijemos en el número 2012, sólo en el número. ¿Qué podemos afirmar de él?
P.P.:- Que es par, que es de la table del 2, ...
F.J.:- Que es de la tabla del 4, porque hemos dicho que era bisiesto.
Yo : A ver, F.J., explica eso con más precisión.
F.J.:- Que si contamos de 4 en 4 llegaríamos a 2012 porque 2012 es de la serie del 4 o de la tabla de multiplicar del 4.
Yo :- ¿Quién sabe expresarlo de otra manera?
C.B: -Que 2012 es un múltiplo de 4.
Yo : - Bien. ¿Y utilizando la palabra "divisible"?
I.R.: -Que 2012 es divisible entre 4.
Yo : - Bien. ¿Y cómo podemos estar seguros?
S.V: - Pues dividiendo entre 4.
Yo : - ¿Y ya está?
P.P.:- Dividiendo entre 4. Si da división exacta sí es múltiplo de 4. Si no, no.
Yo : - Muy bien. ¿Cómo harías tú mentalmente la división, P.C?
P.C.: - 2000 entre 4 y 12 entre 4 y luego lo sumo.
Yo : - Vale, pero escríbelo en la pizarra indicando las operaciones que vas a realizar y utilizando correctamente el signo igual.
P.C. ( escrito en la pizarra): 2012 : 4 = (2000 + 12) : 4 = 2000 : 4 + 12 : 4 = 500 + 3 = 503.
Yo : - ¿Estáis de acuerdo?
Casi toda la clase: - ¡Sí!
Yo : - P.C. ha descompuesto el dividendo de la división, el número 2012, en dos múltiplos de 4. ¿Podría haberlo descompuesto en tres o más múltiplos de 4?
Varios alumnos: - ¡Sí!
P.P.:- ¡Yo, yo, maestro!¡Yo sé varias manera diferentes!.
Yo : -Pues sal a la pizarra y exprésalas correctamente.
P.P y otros (escrito en la pizarra):
  • 2012 : 4 =(1000 + 1000 + 12) : 4 = 1000 : 4 + 1000 : 4 + 12 : 4 = 250 + 250 + 3 = 503.
  • 2012 : 4 =(1600 + 400 + 12) : 4 = 1600 : 4 + 400 : 4 + 12 : 4 = 400 + 100 + 3 = 503.
  • 2012 : 4 =(2000 + 20 - 8) : 4 = 2000 : 4 + 20 : 4 - 8 : 4 = 500 + 5 - 2 = 503.
  • 2012 : 4 =(1000 + 1000 + 20 - 8) : 4 = 1000 : 4 + 1000 : 4 + 20 : 4 - 8 : 4 = 250 + 250 + 5 - 2 = 503.
  • etc.
Yo : - A ver quién me sorprende con alguna forma más sencilla de realizar la división...
F.J(escrito en la pizarra):
  • 2012 : 4 = 1006 : 2 = 503 : 1 = 503.
Yo : - Bien, veo que se entiende. Os planteo otra cuestión. Hay múltiplos de 4 que también son múltiplos de 8 como el 8, el 16, el 24, ...¿Es 2012 un múltiplo de 8?
M.V. (rápidamente): - No, porque no podemos hacerlo dos trozos que sean múltiplos de ocho.
C.B. - Ni dos, ni tres, ni cuatro porque  no da exacto.
Yo : - Exprésalo mejor, M.V., utilizando el verbo descomponer.
M.V. (rápidamente): - Porque no lo podemos descomponer en dos múltiplos de 8...
Yo : - ¿Cuál es el resultado, M.V., de dividir 2012 entre 8?
P.P y otros :-¡Ay, está "chupao"!
M.V. (rápidamente): - La mitad de 503 ...
P.P :- 251.5.

Yo : - Expresa, M.V., un procedimiento indicado para dividir 2012 entre 8.
M.V. (se dirige a la pizarra lentamente):
  • 2012 : 8 = (1600 + 400 + 8 + 4) : 8 = 1600 : 8 + 400 : 8 + 8 : 8 + 4 : 8 = 200 + 50 + 1 + 0.5 = 251.5
Yo : - ¿Sabes tú alguna otra manera, C.G?
C.G. (se dirige a la pizarra lentamente):
  • 2012 : 8 = 1006 : 4 = 503 : 2 = (500 + 3) : 2 = 500 : 2 + 3 : 2 = 250 + 1.5 = 251.5.
Yo : - Bien, volviendo al resultado de la división 2012 entre 4. ¿Que significado tiene 503?
I.R (rápidamente): - Que 2012 es 503 veces 4.
Yo : - Vale, pero ¿qué es 503?
C.B. (un poco dubitativa): - ¿Que desde que comenzó el mundo, bueno no, el tiempo, ha habido 503 años bisiestos?
Yo : - ¿Desde que comenzó el mundo? ¿Desde que comenzó el tiempo?
P.P. (exaltada): - ¡Desde Jesucristo, maestro!

Yo : - Bien, este es ya un asunto algo complicado y lleno de historia. Sería conveniente que lo investigáramos en Internet. Podemos buscar "calendario juliano" o "calendario gregoriano" en Wikipedia. Por ahora vamos a suponer que el comienzo del año uno coincide con el año de nacimiento de Jesucristo. Como bien ha dicho C.B., ha habido 503 años bisiestos desde entonces. ¿De acuerdo? ¿Qué hubiera ocurrido si no se hubieran contado estos 503 años bisiestos?
P.R. (después de un ratito de silencio): - Habría que restar 503 días...

Yo : - Sí, pero ¿al tiempo astronómico, el de los astros, o al tiempo cronológico, el de los calendarios?
P.R.: - ¡Al de los calendarios!
Yo : - ¡Atentos, que esto es alogo lioso! El tiempo astronómico no se puede cambiar. No podemos adelantar ni retrasar la posición de nuestro planeta dando vueltas alrededor del Sol sin parar... Si no hubiésemos contado esos 503 años como bisiestos, el calendario iría 503 días por delante de la fecha actual, es decir, 503 días por delante del tiempo astronómico. Seguiríamos estando en un día fresco de finales de otoño pero habría que sumar 503 días, más de un año, al calendario, bueno, a la fecha actual, para saber la fecha que correspondería al día de hoy...
P.R.: - ¡Ya lo he entendido!
J.J.: De 365 a 400 van 35 y de 400 a 503 van 103. Por lo tanto, habría que añadir un año completo y 138 días más a la fecha actual.
Yo : - ¡Perfecto, J.J!¿Sabrías continuar tu razonamiento?
J.J.: - Añadimos un año completo y estaríamos en el mismo día de hoy, 20 de diciembre, pero de 2012...
Yo  (interrumpiendo): - Seguiría siendo finales de otoño. Sólo faltarían dos días para que comenzara el invierno. ¡Sigue!
J.J.: - Ahora habría que añadir 138 días, que son 120 + 18, cuatro meses y medio más o menos.

Yo  (interrumpiendo): - Totalmente de acuerdo. Por tanto...¡Sigue, D.H!
D.H.(estaba distraído): - Que hay que añadir cuatro meses y medio....
Yo (adivinando que sólo repite un eco) : - No estás atendiendo lo suficiente, D. Si añadimos cuatro meses y medio a la fecha actual, ¿en que fecha del calendario nos quedaríamos, D.?
C.B. y otros/as (exaltados y con las manos en alto): - ¡Yo, yo, maestro!
D.H. (moviendo los labios, tras un tiempo y después de haber oído algo): - ¿A principios de Mayo?
Yo : - Correcto, veo que tienes buen oído, aunque no estoy seguro de que hayas entendido el razonamiento que estamos haciendo. Bueno, resumiendo... Si  hubiéramos contado como años corrientes, de 365 días, desde el año 1 al 2012, hoy el calendario no marcaría el día 20 de diciembre sino un día de la primera quincena de Mayo. Por último, imaginaros que en vez de 20 de diciembre de 2012 el calendario marcara ya el día 20 de diciembre de 4024, justo el doble... ¿qué estación del año sería si se hubieran contado como años corrientes los 4024 años?
C.B. - La misma, maestro, porque el tiempo astronómico no varía. Estaríamos a finales de otoño.
Yo : -No, C., date cuenta que he dicho que el calendario marca 20 de diciembre de 4024. Si se han contado todos los años de 365 días estaríamos adelantados al tiempo astronómico, en el que un año es 365,25 días, ¿no crees?.
C.B. - Sí, ya lo entiendo. Ahora en vez de restar a la fecha actual 503 días habría que quitar el doble, 1006 días...
Yo : -Muy bien, C. ¿Por qué?
P.P (adelantándose a la respuesta de C.B): - Porque si en 2012 años hay 503 bisiestos, en el doble de años habrá el doble de años bisiestos.
C.G.(interrumpiendo):- ¡Eso es ya el futuro, maestro!
Yo : -Correcto. ¿Quién sabe hacer el cálculo mental de una manera aproximada?
P.R.: Ahora en vez de restar 1 año y 138 días habría que restar 2 años y 276 días.
J.J.: Maestro, yo sé otra manera. Es mejor quitar 3 años completos y sumar.
Yo : -¿Y sumar qué?
J.J.: Los días que van desde 276 a 365.
Yo : - Que son...
J.J.: De 276 hasta 300 van 24, más 65 son 89 días, tres meses más o menos..
Yo : - Muy bien, por lo tanto, aunque seguiríamos estando a 20 de diciembre, astronómicamente hablando estaríamos en...
F.J. ( y otros): Si quitamos tres años completos, seguimos estando a finales de diciembre. Si luego sumamos tres meses estaríamos a finales de marzo y sería primavera...

Yo (yendo hacia la pizarra): - O estaríamos muy próximos a entrar en ella... Bueno, ahora voy a anotar en la pizarra algunas actividades de investigación que váis a hacer con la ayuda de vuestros ordenadores portátiles y de Internet, para luego comentarlas en clase:
  • 1.-  Busca en Internet la duración de cada uno de los años de los planetas de nuestro sistema solar, expresados en días terrrestres. Haz una tabla, en tu cuaderno, para presentar la información.
  • 2.- Busca en Wikipedia "calendario gregoriano". Lee la información detenidamente y anota en tu cuaderno sólo las ideas que entiendas y sepas explicar, preferentemente las ideas que más tengan que ver con las matemáticas.

02 noviembre, 2011

Sobre ALOHA Mental Arithmetic y el cálculo deseable en la escuela


Agunos datos...
El ábaco se hizo para llevar a cabo las operaciones fundamentales de la aritmética. El ábaco es el precursor de los modernos computadores. El ábaco más pequeño se construyó en IBM Suiza, 13-nov-1996, del tamaño de una molécula de una millonésima parte de un milímetro. (http://abaxmuseum.blogspot.com/)
La computadora más rápida del mundo hasta la fecha (20 de junio de 2011) es el Ordenador K japonés. Se encuentra en el Instituto RIKEN, en el Centro Avanzado para las Ciencias de la Computación (AICS), en Kobe (Japón), y combina 68.544 CPU tipo SPARC64 VIIIfx cada una con ocho núcleos, lo que arroja un total de 548.352 núcleos. Es capaz de realizar más de ocho mil billones de cálculos por segundo (8 petaflop/s). (Wikipedia)

La "Perla Filosófica", de Gregor Reisch (1503)
Grabado en madera. Este grabado, también conocido como "Margarita Philosophica", nos muestra una alegoría de la aritmética arbitrando la rivalidad entre un partidario de las cifras (algorista) y un adepto al cálculo mediante fichas (abaquista). A uno y otro personaje están asociados por oposición los nombres de Boecio (muerto hacia el 525 y referencia obligada en el Medioevo Occidental) y Pitágoras (asociado a una representación geométrica de los números). El aire triunfal del primero, el aspecto confuso del segundo, así como la ropa llena de cifras de un árbitro parcial, ponen de manifiesto que al comenzar el Renacimiento acaba de producirse una victoria del primer bando, el de los algoristas.



A finales de la Edad Media la discusión entre los partidarios del ábaco y los partidarios del algoritmo se decantó claramente por estos últimos.

Vivimos en una sociedad tecnológicamente avanzada. Las múltiples y diferentes actividades humanas conllevan, cada vez más, la necesidad de realizar ingentes cantidades de cálculos y parece que el avance tecnológico puede medirse en cierta manera por la velocidad de cálculo de las computadoras...

¿Cómo es el cálculo en nuestra sociedad? La mayor parte del mismo es instrumental ( cajas registradoras, calculadoras, computadoras,...).

¿Se corresponde el cálculo que se enseña en la escuela con las características de la sociedad en que vivimos? Poco, ya que predomina un cálculo mecanizado, apoyado en los algoritmos renacentistas - de lápiz y papel-  de las operaciones básicas,  basados en cifras que no aportan significado y que no aprovechan suficientemente el potencial de las propiedades fundamentales de las operaciones. Se trata de un cálculo frecuentemente descontextualizado y que no ha sabido potenciar suficientemente la importancia del cálculo mental.
El cálculo así concebido es una habilidad cognitiva de orden inferior.

La escuela del siglo XXI debe apostar por un cálculo pensado, flexible, basado en números...Por un cálculo razonado (los cálculos más complejos se infieren siempre de otros hechos numéricos más sencillos haciendo uso de las propiedades de las operaciones, del reconocimiento de regularidades o patrones numéricos y del desarrollo progresivo del razonamiento proporcional...) y razonable (no se trata de convertir a nuestros/as alumnos/as en máquinas de calcular...).

Y sin embargo...

Podemos encontrar en Youtube numerosos vídeos que muestran a niños calculando de manera sorprendemtemente rápida, prodigiosa,... Es el caso de los vídeos correspondientes a ALOHA Mental Arithmetic  o a  Flash Anzan  ("el juego para las calculadoras humanas ultrarrápidas"...).

Creada en Malasia en el año 1993, ALOHA Mental Arithmetic cuenta en la actualidad con presencia en 19 países de los 5 continentes. El programa se ofrece de manera idéntica en todo el mundo para garantizar los estándares de calidad consolidados tras 18 años de experiencia. Se publicita como un divertido programa de desarrollo mental para niñ@s de 4 a 13 años, con beneficios para toda la vida:

Operaciones aritméticas con velocidad y precisión.
Capacidad de concentración y atención.
Creatividad y capacidad de visualización.
Capacidad de escucha y habilidad para la observación.
Memoria fotográfica y orientación espacial.
Mayor autoconfianza.
Habilidades analíticas.


ALOHA Mental Arithmetic se basa en el aprendizaje del ábaco :

Los estudiantes de ALOHA Mental Arithmetic descubren el funcionamiento básico del ábaco.
Después, empiezan a realizar operaciones aritméticas con este instrumento de cálculo.
Poco a poco, los alumnos aprenden a visualizar el ábaco en su cabeza y a utilizar esta imagen mental para calcular.
Con la práctica, los niños son capaces de prescindir totalmente del ábaco para realizar operaciones mentalmente a gran velocidad.
Al final del programa, los niños pueden realizar operaciones de hasta 17 dígitos, para lo que deben visualizar 85 cuentas del ábaco.














Sólo podría justificarse una propuesta de adiestramiento en cálculo mental descontextualizado, como la que nos muestran los vídeos anteriores, justificándola como desarrolladora de habilidades cognitivas de orden superior. Y eso es precisamente lo que está cuidando mucho Aloha Mental Arithmetic en su eficaz campaña de marketing. Sus responsables de expansión es España saben pasar con enorme soltura de las razones estrictamente comerciales a justificar sus beneficios para una educación de calidad como si fuesen auténticos expertos en psicología cognitiva.

Ya nadie bien informado duda de la existencia de dos hemisferios cerebrales que, además de controlar partes diferentes del cuerpo, cumplen funciones diferentes en los procesos mentales de reflexión, comprensión y memoria; de que el hemisferio cerebral derecho está subutilizado; de que es necesario revalorizar la importancia de la creatividad y la imaginación en el desarrollo de la inteligencia...Supongo que esto podrá llevarse a cabo de múltiples maneras...

No soy un experto en psicología cognitiva y no pongo en duda las bondades de este programa ALOHA, ni las de tantos otros programas de desarrollo cognitivo que proliferaron a partir de los años sesenta del siglo XX; pero no me extrañaría nada que, por razones estrictamente comerciales - que son las que imperan actualmente en nuestro mundo- se maximizaran en exceso sus beneficios educativos...

Resulta curioso que Kiran Motwani sea directora de Aloha Spain y madre de los niños Ronit y Samir Motwani, de 9 y 10 años de edad, campeones del mundo de cálculo mental. Samir Motwani tiene claro que quiere trabajar en la NASA (imagino que está convencido de que su buena capacidad de cálculo lo hace un buen candidato para ello...). Pero la NASA tiene computadoras que hacen billones de cálculos por segundo....


Creo que a medida que se vayan extendiendo por el territorio nacional las franquicias de ALOHA Mental Arithmetic tomará mayor importancia el debate sobre la necesidad de reorientar adecuadamente la enseñanza-aprendizaje del cálculo en la escuela. Esto me parece positivo. Pero, por otro lado, el poderoso marketing asociado, la oratoria - tipo predicador evangelista o adventista - de los jóvenes presentadores de campeonatos de ALOHA, me infunden sospechas... El asunto me plantea interrogantes tales como:

Soy consciente de que el cálculo con el ábaco es un cálculo estratégico, pensado, pero ...¿No se pone de manifiesto en estos vídeos un adiestramiento excesivamente mecánico y conductista?
¿Responde a las necesidades y características de un cálculo para todos/as?
¿Se trata realmente de un divertido programa para estimular la inteligencia de niños de 4 a 13 años?
Si se fomenta el cálculo mental como actividad extraescolar, ¿qué tipo de cálculo será el estrictamente escolar?
¿Necesita nuestro mundo calculadoras humanas?
¿Por qué se asocia con tanta facilidad buen nivel de cálculo con buen nivel de competencias matemáticas?



En el siguiente vídeo, Naomi W., una niña de 9 años, realiza cálculos mentales que si bien están por encima de la media de los/as niños y niñas de su edad, suponen un grado de competencia en el cálculo que perfectamente puede conseguir un determinado porcentaje de alumnos/as de nuestros centros, de 9 años, con los tiempos normales de enseñanza previstos para el área de Matemáticas. Eso sí, siempre que se enfoque y se practique el cálculo mental adecuadamente. Los cálculos propuesto en el vídeo pueden ser realizados haciendo uso de la propiedad distributiva - la fundamental en el cálculo mental - de la multiplicación con respecto a la suma y de la propiedad distributiva - por la izquierda- de la división con respecto a la suma. Requieren previamente cierto dominio de la descomposición aditiva de números y la memorización de hechos numéricos básicos (tablas de multiplicar pitagóricas)



Los vídeos anteriores muestran el cálculo como producto o resultado final, sin analizar su proceso. Te recomiendo que visualices vídeos sobre cálculo realizados en España con otro enfoque:

¿Y tú qué piensas al respecto?
¿Crees que la aplicación interactiva que se ofrece a continuación es adecuada para contextualizar la propiedad distributiva y adquirir un buen dominio de la misma para la realización de cálculo mental de productos?


(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

¿Has sumado o restado alguna vez con el ábaco?

(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)