27 septiembre, 2014

La noción de currículo y su significado en las matemáticas escolares, según Luis Rico.

Vídeos de IBERCIENCIA
Luis Rico Romero. Universidad de Granada
La noción de currículo y su significado en las matemáticas escolares. 

La noción de currículo y su significado en las matemáticas escolares. Funciones y estructura del currículo de matemáticas. Debate social y debate académico sobre la innovación y el cambio en el currículo de matemáticas. Finalidades en distintas etapas de la evolución de las matemáticas escolares. Cambios conceptuales y base cognitiva del conocimiento matemático. Matemáticas funcionales y alfabetización escolar. Diversidad de opciones y limitaciones en el trabajo con las evaluaciones terminales escolares: campo de estudio y desarrollo.





Luis Rico: Evaluación de la alfabetización matemática escolar


18 septiembre, 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)

17 septiembre, 2014

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!