Mostrando entradas con la etiqueta patrones y regularidades. Mostrar todas las entradas
Mostrando entradas con la etiqueta patrones y regularidades. Mostrar todas las entradas

21 septiembre, 2019

El teorema de Pick para alumnos/as de Primaria.



El Teorema de Pick (yo prefiero en Primaria hablar de fórmula de Pick) no suele incluirse en el currículo de Matemáticas de Educación Primaria, a pesar de ser enormemente visual y fácil de comprobar, incluso utilizando sólo papel cuadriculado. Los conceptos topológico-geométricos (interior, frontera, área, puntos alineados o sobre una misma recta,...) y operaciones (+,-,x,:) implicados en su comprobación son muy sencillos. Todo ello lo hace apropiado para los últimos niveles de Primaria en los que pocos teoremas se adecuan al nivel de los/as alumnos/as.

Dado que en MATE.TIC.TAC se utilizan mucho las tramas de puntos interactivas para el desarrollo de subcompetencias geométricas, sería un fallo no ofrecer a los/as alumnos/as de 3º ciclo de Primaria la oportunidad de comprobarlo en el cálculo de áreas de figuras con vértices en diferentes tramas, o al menos en la trama ortométrica (en la que suele presentarse casi siempre). Pero, obviamente, no es necesario contar con tramas interactivas para su correcto tratamiento didáctico. Basta con tramas impresas sobre papel y lápices de varios colores.

(La versión que aquí presento es una actualización de esta otra ya disponible en mi blog, desde 2011)

Contribuye a la formación en valores de los/as alumnos/as, como una oportunidad más de constatar que la matemática es patrimonio de la humanidad, que no es algo acabado, y que a ella han contribuido, y contribuyen, muchas mentes, como es el caso de Georg Alexander Pick. Se puede aprovechar el hecho de que Pick fue un matemático de origen judío, nacido en Austria, que murió en el Campo de concentración de Theresienstadt para considerar la realidad humana que subyace detrás de determinadas aportaciones.

Además de conocer un interesantísimo patrón en relación con el cálculo de áreas en situaciones discretas, invita a razonar y justificar el área ya conocida del polígono trazado por procedimientos más generales: dividiendo la figura en polígonos más sencillos y calculando el área total como suma de áreas parciales. Esto último tiene un gran valor didáctico. 

La comprobación interactiva de la fórmula de Pick resulta fácil para alumnos/as de 5º y 6º de Primaria. Didácticamente,como se ha comentado anteriormente, conviene proponer figuras de área conocida, calculada con la fórmula de Pick, por ejemplo, para justificar argumentadamente su área utilizando también otras estrategias.

Se presenta primero la fórmula de Pick en una cuadrícula (o trama ortométrica de puntos). En otra escena, los puntos de una misma trama isométrica pueden ser considerados tanto los vértices de una malla triangular como de una malla rómbica. Elegir uno u otro de estos polígonos unitarios de la malla como unidad de superficie, conlleva multiplicar o dividir la fórmula de Pick por 2. 

Para el caso de la malla rómbica y el rombo como unidad de superficie, las fórmula de Pick coincide con la fórmula para una malla cuadrada o rectangular (A = nI + nF/2 - 1)*. Sin borrar la figura realizada, pero eligiendo la malla triangular y el triángulo equilátero como unidad de superficie, se comprueba como el área viene ahora dada por la misma fórmula, solo que multiplicada por 2: (A = 2nI  + F - 2).

(*) 
nI = número de puntos de la trama en el interior del polígono.
nF= número de puntos de la trama en la frontera del polígono (lados).



31 agosto, 2019

Cruce de ranitas



“…Por esto no es de extrañar en absoluto que muchos de los grandes matemáticos de todos los tiempos hayan sido agudos observadores de los juegos, participando muy activamente en ellos, y que muchas de sus elucubraciones, precisamente por ese entreveramiento peculiar de juego y matemática, que a veces los hace indiscernibles, hayan dado lugar a nuevos campos y modos de pensar en lo que hoy consideramos matemática profundamente seria.”
JUEGOS MATEMÁTICOS EN LA ENSEÑANZA. Miguel de Guzmán
Actas de las IV Jornadas sobre Aprendizaje y Enseñanza de las Matemáticas
Santa Cruz de Tenerife, 10-14 Septiembre 1984
Sociedad Canaria de Profesores de Matemáticas Isaac Newton


Cruce de ranitas” y “Torres de Hanoi” son dos interesantísmos juegos que presentan similitudes. En ambos, el proceso de solución se puede reducir a un procedimiento algorítmico que presenta cierta simetría y recurrencia (un caso más complejo contiene a un caso más simple) y, como diría el gran Miguel de Guzmán, suponen un interesante “entreveramiento de juego y matemática” que se puede trasladar, con el andamiaje conveniente, a alumnos/as de Primaria.

Como se puede comprobar,  no se trata de hacer “jugar” a niños y niñas de modo improvisado, sino de manera intencionada y planificada para lograr resultados (una matematización del juego adecuada al nivel de los/as niños/as). Para ello se facilitan y analizan codificaciones de movimientos que facilitan descubrir los patrones o regularidades que determinan la correcta solución.

En la generalización algebraica del número de movimientos necesarios a partir del número de elementos colocados, en ambos casos, se toma como base el estudio de los códigos, su análisis en elementos más simples, el recuento, la formación de series… Las series numéricas que aparecen son adecuadas para alumnos/as de 3º ciclo de Primaria: 2n (las potencias de 2), 2n-1 (las potencias de 2 disminuidas en 1), 2n (la serie de los números pares o múltiplos de 2) y n2 (la serie de los números cuadrados perfectos).

Ambos juegos son situaciones ideales para aplicar un razonamiento lógico-matemático de tipo inductivo (entiéndase una inducción informal) en tanto en cuanto a partir de la resolución de casos  sencillos se intuye el procedimiento general para la resolución de casos más complejos.

Existen muchas versiones de estos juegos en internet. Las mejores de ellas están realizadas con Flash. Las principales innovaciones tecnológicas que yo aporto son la posibilidad de estudiar las soluciones “paso a paso, permitiendo que los/as niños/as se tomen el tiempo necesario para descubrir patrones, y la codificación instantánea de los movimientos realizados. En otro orden está el personal enfoque pedagógico-didáctico que facilita la matematización de estos juegos en Primaria.