22 julio, 2012

Simulaciones de móviles con velocidad constante y razonamiento matemático en Primaria.

Razonamiento matemático con móviles. Educación Primaria.
Desde didactmaticprimaria.com, se ofrece  un nuevo recurso educativo digital.
Como complemento a la lección interactiva ofrecida en la entrada anterior de este blog (Métodos especiales de resolución de problemas aritméticos. Problemas de móviles en Primaria.), y siguiendo las consideraciones didáctico metodológicas que en la misma se hacen, he desarrollado esta nueva aplicación que va dirigida, como nivel/es de referencia, a alumnos/as de 10 años (5º de Primaria) en adelante.

En la concepción teórica e implementación técnica de esta aplicación subyace el enfoque de "educación matemática realista", basada en la resolución de problemas (o retos). Toma como base teórica los trabajos de Vigostky, quien sostiene que el aprendizaje no está supeditado al desarrollo, sino que éste puede ser potenciado por las prácticas de enseñanza (tradicionalmente no se tratan en Primaria problemas de móviles sino que se postponen para Secundaria y, además, se resuelven de manera algebraica, haciendo uso de las ecuaciones. Aquí, en cambio, se utiliza fundamentalmente la experimentación -simulación-, el razonamiento numérico proporcional que todo alumno tiene en mayor o menor grado, las operaciones básicas y métodos aritméticos y gráfico-geométricos). Teniendo en cuenta las conceptualizaciones de Vigostky en torno a la zona de desarrollo próximo, las simulaciones (o modelizaciones)  constituyen un inmejorable andamiaje intuitivo sobre el que apoyar el razonamiento matemático que permite resolver los numerosos retos propuestos...

Los modelos interactivos pueden ser utilizados para que los alumnos/as hagan sus hipótesis, expresen sus argumentos, adelanten soluciones aproximadas o exactas y verifiquen lo acertado o no de sus conjeturas.


Requiere, como único conocimiento previo, el concepto intuitivo de velocidad que los/as alumnos/as de estas edades tienen (derivado de la frecuencia de su uso social en competiciones, carreras, automóvil familiar, etc...). Puesto que se trata de una magnitud que expresa, a su vez, la relación entre dos más sencillas (espacio recorrido y tiempo empleado), conviene profundizar en el significado de esta relación, sobre todo en orden a desarrollar el razonamiento numérico proporcional que los alumnos de estas edades poseen em mayor o menor grado. Mientras velocidad y espacio son magnitudes directamente proporcionales, velocidad y tiempo son magnitudes inversamente proporcionales...
No se propone aquí el tratamiento formalizado de los contenidos del bloque de PROPORCIONALIDAD (propio de Educación Secundaria) pero sí se persigue favorecer, como ya se ha dicho, el razonamiento numérico proporcional utilizando diferentes métodos de resolución de problemas aritméticos: reducción a la unidad, uso de tablas de proporcionalidad, métodos gráfico-geométricos...

Comienza enseñándoles a utilizar el cronómetro para medir tiempos con precisión. Además, los botones del cronómetro sirven para controlar el movimiento (iniciarlo, detenerlo, reiniciarlo) de los diferentes móviles (coches, corredora, insectos,..) que se utilizan en las simulaciones. Se invita a los/as alumnos/as a que realicen tantas simulaciones como deseen - manipulación de modelos gráficos interactivos-, calculen las velocidades a las que se mueven diferentes coches que recorren un mismo circuito a diferentes velocidades, o las diferentes velocidades  de varios insectos, etc...; se profundiza, desde varias ópticas, en la simulación y análisis de diferentes problemas de móviles ( cuando marchan en sentidos opuestos para encontrarse; cuando parten en el mismo instante, desde el mismo punto y con velocidades diferentes; cuando parten desde el mismo punto, en la misma dirección pero uno aventaja al otro); etc...

Los retos propuestos (aproximadamente setenta) son realistas, poco rutinarios (no se busca la aplicación mecánica de una fórmula sino el uso del razonamiento numérico proporcional) y variados. 

La aplicación está perfectamente adaptada para su utilización con PDI, pudiendo completarse campos numéricos y de texto haciendo uso de los botones de teclado que aparecen en las diferentes pantallas que lo necesitan. De análoga manera, otras pantallas permiten hacer visible, o invisible, una calculadora. Se informa al instante de lo correcto o incorrecto de los datos introducidos por el usuario.