Desde didactmaticprimaria.com, se ofrece un nuevo recurso educativo digital.
Como complemento a la lección interactiva ofrecida en la entrada anterior de este blog (Métodos especiales de resolución de problemas aritméticos. Problemas de móviles en Primaria.), y siguiendo las consideraciones didáctico metodológicas que en la misma se hacen, he desarrollado esta nueva aplicación que va dirigida, como nivel/es de referencia, a alumnos/as de 10 años (5º de Primaria) en adelante.
En la concepción teórica e implementación técnica de esta aplicación subyace el enfoque de "educación matemática realista", basada en la resolución de problemas (o retos). Toma como base teórica los trabajos de Vigostky, quien sostiene que el aprendizaje no está supeditado al desarrollo, sino que éste puede ser potenciado por las prácticas de enseñanza (tradicionalmente no se tratan en Primaria problemas de móviles sino que se postponen para Secundaria y, además, se resuelven de manera algebraica, haciendo uso de las ecuaciones. Aquí, en cambio, se utiliza fundamentalmente la experimentación -simulación-, el razonamiento numérico proporcional que todo alumno tiene en mayor o menor grado, las operaciones básicas y métodos aritméticos y gráfico-geométricos). Teniendo en cuenta las conceptualizaciones de Vigostky en torno a la zona de desarrollo próximo, las simulaciones (o modelizaciones) constituyen un inmejorable andamiaje intuitivo sobre el que apoyar el razonamiento matemático que permite resolver los numerosos retos propuestos...
Los modelos interactivos pueden ser utilizados para que los alumnos/as hagan sus hipótesis, expresen sus argumentos, adelanten soluciones aproximadas o exactas y verifiquen lo acertado o no de sus conjeturas.
Los modelos interactivos pueden ser utilizados para que los alumnos/as hagan sus hipótesis, expresen sus argumentos, adelanten soluciones aproximadas o exactas y verifiquen lo acertado o no de sus conjeturas.
Requiere, como único conocimiento previo, el concepto intuitivo de velocidad que los/as alumnos/as de estas edades tienen (derivado de la frecuencia de su uso social en competiciones, carreras, automóvil familiar, etc...). Puesto que se trata de una magnitud que expresa, a su vez, la relación entre dos más sencillas (espacio recorrido y tiempo empleado), conviene profundizar en el significado de esta relación, sobre todo en orden a desarrollar el razonamiento numérico proporcional que los alumnos de estas edades poseen em mayor o menor grado. Mientras velocidad y espacio son magnitudes directamente proporcionales, velocidad y tiempo son magnitudes inversamente proporcionales...
No se propone aquí el tratamiento formalizado de los contenidos del bloque de PROPORCIONALIDAD (propio de Educación Secundaria) pero sí se persigue favorecer, como ya se ha dicho, el razonamiento numérico proporcional utilizando diferentes métodos de resolución de problemas aritméticos: reducción a la unidad, uso de tablas de proporcionalidad, métodos gráfico-geométricos...
Comienza enseñándoles a utilizar el cronómetro para medir tiempos con precisión. Además, los botones del cronómetro sirven para controlar el movimiento (iniciarlo, detenerlo, reiniciarlo) de los diferentes móviles (coches, corredora, insectos,..) que se utilizan en las simulaciones. Se invita a los/as alumnos/as a que realicen tantas simulaciones como deseen - manipulación de modelos gráficos interactivos-, calculen las velocidades a las que se mueven diferentes coches que recorren un mismo circuito a diferentes velocidades, o las diferentes velocidades de varios insectos, etc...; se profundiza, desde varias ópticas, en la simulación y análisis de diferentes problemas de móviles ( cuando marchan en sentidos opuestos para encontrarse; cuando parten en el mismo instante, desde el mismo punto y con velocidades diferentes; cuando parten desde el mismo punto, en la misma dirección pero uno aventaja al otro); etc...
Los retos propuestos (aproximadamente setenta) son realistas, poco rutinarios (no se busca la aplicación mecánica de una fórmula sino el uso del razonamiento numérico proporcional) y variados.
La aplicación está perfectamente adaptada para su utilización con PDI, pudiendo completarse campos numéricos y de texto haciendo uso de los botones de teclado que aparecen en las diferentes pantallas que lo necesitan. De análoga manera, otras pantallas permiten hacer visible, o invisible, una calculadora. Se informa al instante de lo correcto o incorrecto de los datos introducidos por el usuario.
No se propone aquí el tratamiento formalizado de los contenidos del bloque de PROPORCIONALIDAD (propio de Educación Secundaria) pero sí se persigue favorecer, como ya se ha dicho, el razonamiento numérico proporcional utilizando diferentes métodos de resolución de problemas aritméticos: reducción a la unidad, uso de tablas de proporcionalidad, métodos gráfico-geométricos...
Comienza enseñándoles a utilizar el cronómetro para medir tiempos con precisión. Además, los botones del cronómetro sirven para controlar el movimiento (iniciarlo, detenerlo, reiniciarlo) de los diferentes móviles (coches, corredora, insectos,..) que se utilizan en las simulaciones. Se invita a los/as alumnos/as a que realicen tantas simulaciones como deseen - manipulación de modelos gráficos interactivos-, calculen las velocidades a las que se mueven diferentes coches que recorren un mismo circuito a diferentes velocidades, o las diferentes velocidades de varios insectos, etc...; se profundiza, desde varias ópticas, en la simulación y análisis de diferentes problemas de móviles ( cuando marchan en sentidos opuestos para encontrarse; cuando parten en el mismo instante, desde el mismo punto y con velocidades diferentes; cuando parten desde el mismo punto, en la misma dirección pero uno aventaja al otro); etc...
Los retos propuestos (aproximadamente setenta) son realistas, poco rutinarios (no se busca la aplicación mecánica de una fórmula sino el uso del razonamiento numérico proporcional) y variados.
La aplicación está perfectamente adaptada para su utilización con PDI, pudiendo completarse campos numéricos y de texto haciendo uso de los botones de teclado que aparecen en las diferentes pantallas que lo necesitan. De análoga manera, otras pantallas permiten hacer visible, o invisible, una calculadora. Se informa al instante de lo correcto o incorrecto de los datos introducidos por el usuario.
Hola Juan, me parece interesantísima la aplicación de problemas con móviles, les he echado un vistazo a las dos sesiones, son unas actividades que a mis alumnos/as, les motivará. Las incluyo en la propuesta de UD en 6º, hasta ahora lo trabajaba manipulativamente, con recorridos de canicas que ellos cronometran, o aprovechando sus marcas propias de atletismo, tu planteamiento me parece estupendo.
ResponderEliminarSuerte que en mi centro comenzaremos este curso con los ordenadores y pizarra digital en el aula de 6º, donde continuaré trabajando inclusivamente, con 2 alumnos TDHA y otro con S Down, a los que les viene muy bien tu propuesta, también para reforzar con sus familias en casa.
¡FELIZ VERANO!
¡Feliz verano, Alicia!
EliminarMe alegra que te parezca interesante esta aplicación en la que propongo retos nada rutinarios en el currículo de matemáticas del 3º ciclo de Primaria. No tengo experiencia con alumnos/as TDHA ni S.Down. A ver si a lo largo del próximo curso tenemos ocasión de comentar cómo trabajan determinados contenidos de Matemáticas. Para mí sería enriquecedor saberlo.
Me encantaría poder comentarte algunas experiencias de mis alumnos, te informo de que los padres de Curro, mi alumno con S. Down, se sorprenden de que le guste tanto las matemáticas. Le gusta porque las comprende.
ResponderEliminarTerminé de hacer algunos de los retos que propones, les encantará hacerlo ellos.
Como siempre, fabuloso tu trabajo...
ResponderEliminarÁnimo y adelante. La educación 2.0 no se para...
Antonio Pérez