Mostrando entradas con la etiqueta Geometría y Medida. Mostrar todas las entradas
Mostrando entradas con la etiqueta Geometría y Medida. Mostrar todas las entradas

26 febrero, 2017

La medida de la superficie. Áreas.

Medida de la superficie. Secuencia internivelar
Medida de la superficie. Secuencia internivelar. Menú. Didactmaticprimaria.net


Allí donde no pueden llegar las estáticas propuestas en material impreso, ni los libros de texto ni las “versiones digitales” de éstos; Allí donde no siempre alcanza la manipulación con una cantidad considerable de manipulativos físicos; más allá de las propuestas y proyectos digitales basados en un excesivo fraccionamiento de contenidos conceptuales y en una reducidísima gama de tipologías de tareas (respuesta múltiple y algunas ordenaciones); más allá de aquellos proyectos digitales en los que es nula o casi nula la posibilidad de manipulación y descubrimiento y en los que se elude el tratamiento de procedimientos y métodos…; más allá de las propuestas digitales rutinarias para complementar libros de texto; superando los listados y colecciones de manipulables virtuales… Allí es donde se sitúan las secuencias internivelares integradas en torno a un tópico matemático como la que se presenta aquí y de las que se pueden encontrar numerosos ejemplos en este blog.

Se trata de propuestas con una profusión sin precedentes de manipulativos virtuales perfectamente integrados para experimentar la gran variedad de procedimientos y métodos en cada uno de los bloques de contenidos del área de Matemáticas en Primaria así como para diversificar y enriquecer la naturaleza de las producciones de los/as alumnos.

Tienen el valor añadido (con respecto a la gran mayoría de los proyectos digitales para matemáticas en Primaria existentes) de estar tanto del lado del docente (para apoyar sus explicaciones y propuestas) como del lado del alumno/a (permitiendo su trabajo autónomo y/o semidirigido). Si ya son considerables las innovaciones que presentan a la hora de mostrar y tratar los contenidos, hay que destacar que desde su diseño se han implementado, como variables didácticas esenciales, la posibilidad de manipulación libre (tanto para que el profesorado construya sus propias ejemplificaciones y modelos como para dar al alumnado la posibilidad real de descubrir) y la de resolver los retos propuestos por el diseñador. A esto hay que sumar su excelente interactividad y un elevado grado de configuración de las aplicaciones.

Todo lo anterior convierte a estas secuencias integradas en poderosos y eficaces instrumentos para la enseñanza y el aprendizaje de matemáticas en Primaria. Pero son muchas más las variables epistemológicas y didácticas que se han considerado e implementado en su cuidado diseño fruto de una larga experiencia: equilibrar el rigor de los contenidos con el atractivo en su presentación, la gran variedad de retos que proponen y son capaces de corregir, las innovaciones vanguardistas que presentan, la búsqueda integradora de conexiones productivas entre conceptos y tópicos que se tratan…

Frente a una visión estática de la matemática, presentan una visión dinámica de la misma. Frente a una excesiva fragmentación de los contenidos conceptuales (en la que se busca aparentar exhaustividad, o bien administrar mejor la publicidad que va aparejada a cada unidad diferente de contenido,  o bien adecuarse a una justificación de los  la bondad de los "big data" en educación –con algoritmos poco fiables en la actualidad- y con utilidad dudosa, o bien adecuarse a su utilización en plataformas digitales…) se propone la integración de los mismos como forma más apropiada de desarrollar la competencia matemática. Frente al tratamiento de contados casos particulares, se busca el máximo de generalización con aplicaciones casi "inagotables" a las que se puede volver una y otra vez sin tener que hacer lo mismo que la última vez... 

Frente a una matemática dogmática y encorsetada, se propone una matemática flexible y creativaFrente a una matemática unidireccional y convergente ("¿Cuál es el área de esta figura?") se propone una matemática bidireccional y divergente ("¿Cuál es el área de esta figura?" -----"Encuentra diferentes figuras de área 5 unidades cuadradas"Frente a la apariencia y el marketing como prioridades, se propone la esencia como más ajustada a la verdad; Frente a una matemática de lo mecánico y rutinario se propone una matemática de la comprensión, de lo cognitivo y metacognitivo, experimental y constructivista. Frente a una matemática que margina todo aquello que no sea cálculo se propone una matemática que reivindica la geometría, la medida, el tratamiento de la información, la estadística, el azar y la probabilidad y, sobre todo, una amplia y rica concepción de la resolución de problemas en Primaria. 




22 enero, 2017

Cálculo estratégico de áreas.


Cálculo estratégico de áreas.


En algunas comunidades autónomas del estado español (Comunitat Valenciana, por ejemplo) aparece como contenido de 2º Ciclo (en 4º concretamente) la determinación y cálculo de áreas de cuadrados y rectángulos utilizando unidades no convencionales.

No es el caso de Andalucía,  a pesar de que sí que aparecen contenidos relativos a perímetros de figuras, ángulos,... en el 2º ciclo de Primaria. En Andalucía, contenidos y procedimientos relativos a la cantidad de superficie que ocupa una figura (un atributo visible y cuantificable de la misma) no aparece de manera explícita hasta el 3º ciclo de Primaria…

No obstante, en primer ciclo (Andalucía)  ya aparecen contenidos tales como:
  • Formación de figuras planas y cuerpos geométricos a partir de otras por composición y descomposición.
  • Búsqueda de elementos de regularidad en figuras y cuerpos a partir de la manipulación de objetos.

En segundo ciclo (Andalucía) se contemplan investigaciones sencillas, que pueden estar relacionadas con la geometría y la medida, se explicitan criterios para el perímetro tales como:

  • MAT.2.12.1. Comprende el método de cálculo del perímetro de cuadrados, rectángulos,triángulos, trapecios y rombos. (CMCT).
  • MAT.2.12.2. Calcula el perímetro de cuadrados, rectángulos, triángulos, trapecios y rombos, en situaciones de la vida cotidiana. (CMCT)

También se “agrupan” en un mismo nivel de dificultad longitud, masa y capacidad, por la regularidad (de 10 en 10) que presentan sus unidades en el SMD y quizá, también, por el peso de la tradición escolar que pone el énfasis en reducir los atributos geométricos a su cuantificación y expresión en diferentes unidades y trabajar las equivalencias de unidades más que las propias estrategias de determinación y cálculo.

En 3º ciclo (Andalucía) ya aparecen contenidos tales como:
  • 3.1. Unidades del Sistema Métrico Decimal de longitud, capacidad, masa, superficie y volumen.
  • 3.7. Desarrollo de estrategias para medir figuras de manera exacta y aproximada.
  • 3.11. Comparación de superficies de figuras planas por superposición, descomposición y medición.
  • 3.12. Sumar y restar medidas de longitud, capacidad, masa, superficie y volumen.
  • 4.10. Perímetro y área. Cálculo de perímetros y áreas.

Si presento esta aplicación como adecuada "a partir de 4º" es debido a mi experiencia en el aula. Los/as alumnos/as de este nivel comprenden (más con aplicaciones de geometría dinámica como ésta) estrategias, basadas en la composición y descomposición de figuras y en la reagrupación de sus partes haciendo uso de traslaciones traslación y giros; comprenden sencillas relaciones de reunión o multiplicidad en las figuras que pueden aplicar a la determinación de la cantidad de superficie (área) de éstas y su expresión en unidades no convencionales.

La aplicación presenta diferentes colecciones de figuras que pueden ser aprovechadas de múltiples formas, tanto de manera individual como grupal y colectiva, y/o que pueden servir de estímulo para otras tareas no propuestas en la misma:

Elegir una figura y explicar (oralmente y/o por escrito) el procedimiento seguido para expresar su área (cantidad de superficie) en unidades no convencionales.

Formar familias de figuras de igual área atendiendo a diferentes criterios ( con 4 escuadras, con 8 escuadras, con 9 triangulos equiláteros idénticos, ...

20 abril, 2013

"Geofraccionador". Taller de fraccionamiento de figuras.


El nuevo recurso que brindo al público en esta entrada surge como evolución de otras aplicaciones centradas en el diseño de figuras sobre tramas de puntos virtuales e interactivas: "Copiar figuras", "Geoplanos", "Geoplano Inteligente", "Áreas de polígonos con vértices en una trama ortométrica", "Área de polígonos con vértices en una trama isométrica", "Pizarras geométricas", y otras...Todas ellas inciden de manera ideal, a mi juicio, en el desarrollo de la percepción espacial - tanto analítica como sintética-, que es a la geometría lo que la comprensión lectora es a la lectura.

Lo esencial en un geoplano virtual no es que represente con mayor o menor realismo los vértices o pivotes ni los "elásticos", a modo de un geoplano analógico. Como ya indiqué en  el post "Tramas de puntos, geoplanos y pizarras geométricas", el interés didáctico de los geoplanos ( sean dibujados, analógicos o digitales) reside en que son modelos finitos del plano, con una geometría finita: un número finito de puntos (puntos de la trama o vértices de la malla), de longitudes de segmentos, de valores angulares, de polígonos; un número finito de valores para el perímetro y el área de éstos,  etc...

Este nuevo recurso, que he bautizado con el nombre de "GEOFRACCIONADOR", está pensado para ser utilizado como "taller de fracciones" (aunque su interés es innegable para el estudio de áreas de figuras por composición/descomposición). Aunque me encantan los materiales didácticos analógicos, creo que no cabe duda del valor añadido que aportan los correspondientes materiales virtuales bien diseñados (ver "Material didáctico analógico vs material didáctico digital"). Así, "GEOFRACCIONADOR" añade nuevas dimensiones y posibilidades a las de materiales analógicos diseñados para la representación y estudio de fracciones, tales como los que aparecen en "eje" ("Espacio Jordi Esteve" página web de materiales manipulativos por la enseñanza de las Matemáticas. Un proyecto del grupo PuntMat: Ana Cerezo, Cecilia Calvo, David Barba y "mirones asociados"):


Espai Jordi Esteve


 Como "geoplano virtual" que es, permite la fácil obtención de polígonos pulsando sobre los vértices del mismo. Para adecuarlo especialmente al fraccionamiento, el polígono unidad (rectángulo, cuadrado o triángulo equilátero) se puede fraccionar en un número variable de partes iguales, variando a la par el número de puntos interactivos que se sitúan en los vértices de cada una de las partes. Además, se pueden trazar varias (hasta 12) figuras_fracciones del polígono unidad con diferente color, desplazables y semitransparentes,  para facilitar su comparación. Esta comparación se puede llevar a cabo por dos procedimientos esenciales: el adosamiento sin solapamiento (que equivale a la suma) y por superposición ( que sirve para ilustrar diferencias así como para captar relaciones de multiplicidad- multiplicación y división-).

La aplicación, además, en modo "manipulación libre", muestra las fracciones numéricas que se corresponden por el color con las fracciones figurativas. Se trata de un "geoplano virtual inteligente" en el sentido de que guarda alguna/s características de los polígonos trazados ( la fracción de la unidad que representan, el número de vértices, la longitud de los lados, etc...). De esta manera favorece el descubrimiento  y expresión de relaciones ( en modo manipulación libre) así como el proponer retos de determinación de polígonos que reúnan determinadas características y su comprobación.

Geofraccionador I

(Pulsar sobre la imagen para abrir la aplicación)



Como ya he indicado anteriormente, el gran potencial de esta aplicación se alcanza en modo "MANIPULACIÓN LIBRE" (tanto del lado de profesores/as como de alumnos/as) cuando se utilizan las características de diseño de la aplicación y el apoyo visual de las figuras para ilustrar, descubrir y expresar relaciones entre fracciones numéricas. 

A continuación se ofrecen algunas imágenes que sugieren el potencial didáctico de esta aplicación:



Ilustración gráfica del concepto "fracciones equivalentes".
Diferentes fracciones del rectángulo unidad. Correspondencia de color entre fracciones gráficas y numéricas.
Diferentes fracciones gráficas del triángulo equilátero unidad para el estudio de relaciones de reunión y multiplicidad entre ellas y expresión de las correspondientes relaciones numéricas implícitas.
Comparación gráfica y numérica de fracciones de una misma unidad. Suma (adosamiento sin solapamiento) y resta (superposición) de fracciones. Predecir el resultado numérico a partir del gráfico para demostrar la coherencia de las operaciones numéricas con fracciones.

Sencillas relaciones de multiplicidad entre fracciones de la misma unidad. Correspondencia gráfico-numérica.







04 noviembre, 2012

El círculo, un polígono regular muy especial. Áreas de figuras básicas. Relaciones.

La nueva aplicación que se ofrece es el resultado de la adaptación y mejora de algunas aplicaciones que había realizado hace años y que, al contrario que ésta, no estaban adaptadas para su utilización con PDI.

Desplegando un polígono regular para convertirlo en un rectángulo de áreas equivalente
Desplegando un polígono regular
Se trata de una aplicación muy completa que ilustra, de manera dinámica, cómo se obtienen las áreas de figuras básicas (triángulo rectángulo, otros triángulos, paralelogramos, cometas, trapecios, polígonos regulares y círculo) a partir del área del rectángulo. También propone el cálculo estratégico de áreas de familias de figuras obtenidas en mallas cuadradas y en mallas triangulares equiláteras así como el área de las figuras básicas antes mencionadas.

En ella se le da un tratamiento especialmente interactivo al área de un círculo a partir del área de un polígono regular. Y al área de ambos a partir de la del rectángulo (también a partir de las áreas de paralelogramos y romboides).

En Primaria suele presentarse el círculo como un no polígono ( porque no tiene lados rectos). Esto no es sino consecuencia de una visión tradicional y estática de la geometría. Desde una perspectiva dinámica, como la que ofrece esta aplicación, es fácil ver y comprobar cómo un polígono regular de 30 ó 40 lados, inscrito en un círculo, apenas puede diferenciarse del mismo. ¿Y si aumentamos el número de lados a 200 ó 1000? ¿Qué tendencia muestra su apotema?¿Y la longitud de sus lados? No resulta chocante, pues, aceptar que un círculo es un polígono regular de infinitos lados rectos infinitamente pequeños. En el caso límite (al aumentar progresivamente el número de lados) la apotema se confunde con el radio del círculo, la longitud del lado del polígono regular tiende a cero y el perímetro tiende, sin sobrepasarlo, al valor de la longitud de la circunferencia. 

Estos casos límite (como ocurre cuando se consideran los triángulos casos límite de cometas)  pueden ilustrarse de manera óptima gracias a las aplicaciones que, de una manera u otra, permiten abordar geometría dinámica.


(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)


En el siguiente vídeo se nos ofrece una manera curiosa y original de acercarse al área de un círculo. Aunque se realice con elementos tridimensionales (esferas idénticas), no es difícil imaginar la correspondiente demostración con círculos idénticos tan pequeños como se desee (con puntos). La ilustración es muy sugerente y acertada: