Mostrando entradas con la etiqueta Investigaciones geométricas. Mostrar todas las entradas
Mostrando entradas con la etiqueta Investigaciones geométricas. Mostrar todas las entradas

19 agosto, 2018

Geometría de la Alhambra de Granada para alumnos/as de Primaria.

Geometría de la Alhambra de Granada para alumnos/as de Primaria.


Los diseños geométricos del arte andalusí, y más concretamente del arte nazarí, se repiten en distintos formatos y superficies en los monumentos arquitectónicos emblemáticos de este arte y época. 

Probablemente sean  los alicatados de La Alhambra de Granada (Patrimonio Cultural de la Humanidad desde 1984) el tipo de ornamentación en el que más fácilmente podamos apreciar una gran variedad de armoniosas tramas geométricas realizadas con gran maestría, desde composiciones simples (basadas en la repetición de uno o dos figuras) a composiciones complejas (en las que diferentes motivos se desplazan, rotan o se reflejan para generar a su vez nuevas formas geométricas a un nivel superior).

Pero, ¿cómo podemos acercar la geometría básica de los alicatados de la Alhambra a los/as alumnos/as de Primaria? ¿Puede un/a alumno/a de Primaria identificar, conocer, construir y experimentar con algunas de las teselas más utilizadas en la realización de mosaicos? ¿Puede comprender y realizar diseños de lacería, esas intrincadas tramas geométricas con bandas que se entrecruzan?

Esta innovadora aplicación propone una exploración visual, lúdica, dinámica y constructiva que permitirá que los/as alumnos/as de Primaria conozcan mucho mejor e interioricen de manera significativa la geometría ornamental básica de la Alhambra. A la par, estarán trabajando el razonamiento geométrico a través del trazado, composición y descomposición de figuras, el reconocimiento y utilización de patrones geométricos y las isometrías o movimientos en el plano.

Nunca antes, que yo sepa, se había hecho así. Si bien las teselas ligadas a los más “famosos”, divulgados y/o asequibles mosaicos (“avión”, “clavo”, “hueso”, “pajarita”, “murciélago”, molinete”,…) han sido bien presentadas y analizadas por diferentes docentes de Secundaria, no me consta que exista ninguna aplicación digital que permita realizar con facilidad y total precisión estos mosaicos… menos aún los diseños de lacería.

He retomado aplicaciones mías antiguas, de hace ya más de 15 años, donde presentaba dinámicamente algunos de estos mosaicos, pero no de manera constructiva. Las he mejorado sensiblemente… La principal innovación es que permite construir con suma facilidad los mosaicos aludidos y variantes que permiten comprender cómo lo complejo se obtiene como variante de lo simple. En especial, cabe destacar lo fácil que se hace aquí la relación entre una tesela diseñada para pavimentar el plano y su correspondiente tesela para la realización de la lacería asociada al mismo…

Se facilita material imprimible y fotocopiable.

Ver, también, 


05 julio, 2017

Puzle_transformables y construcciones poliédricas

Puzle_transformables y construcciones geométricas

Algunos de los contenidos,  correspondientes  al 3º ciclo de Primaria, sobre los que se incide:

4.13. Formación de figuras planas y cuerpos geométricos a partir de otras por composición y descomposición.
4.16. Regularidades y simetrías: Reconocimiento de regularidades.
4.17. Reconocimiento de simetrías en figuras y objetos.
4.18. Trazado de una figura plana simétrica de otra respecto de un elemento dado.
4.19. Introducción a la semejanza: ampliaciones y reducciones.
4.20. Utilización de instrumentos de dibujo y programas informáticos para la construcción y exploración de formas geométricas.
4.21. Interés por la precisión en la descripción y representación de formas geométricas.
4.23. Confianza en las propias posibilidades para utilizar las construcciones geométricas, los objetos y las relaciones espaciales para resolver problemas en situaciones reales.
4.24. Interés por la presentación clara y ordenada de los trabajos geométricos.

Fuente: https://aprendiendomatematicas.com/cita-de-santalo/

23 marzo, 2016

Multigeoplano. Clases de triángulos y cuadriláteros.Percepción analítica.






En los geoplanos analógicos (y en la mayoría de los virtuales) los puntos de anclaje, que son vértices de los polígonos  que podemos formar, son fijos. En un geoplano ortométrico no se puede conseguir un triángulo equilátero. En un geoplano isométrico  no se puede conseguir un cuadrado…¿Y si se diseña un geoplano con puntos de anclaje variables de tal modo que permita obtener, entre muchos otros polígonos, todos los tipos de triángulos y cuadriláteros?

He denominado multigeoplano a esta aplicación en la que se pueden utilizar, a lo sumo, cuatro círculos desplazables de igual radio. Al desplazar los círculos, se muestran los puntos de intersección de sus correspondientes circunferencias (12 puntos como máximo), que serán potenciales vértices de polígonos. A ellos se pueden añadir los puntos que son centro de cada uno de los círculos.

El desplazamiento de los círculos se puede realizar de manera libre (a cualquier posición del plano)  o ajustando las posiciones de sus respectivos centros a posiciones discretas del plano gracias a la posibilidad de atracción a los vértices de una cuadrícula. Esto permite ajustar las posiciones relativas de dos círculos cualesquiera con la precisión deseada para que sean tangentes o bien secantes y, si se desea, obtener una disposición de puntos simétrica con respecto a alguno de los ejes de coordenadas… De esta manera se obtienen numerosas configuraciones diferentes de puntos de indudable interés para servir de soporte a razonamientos geométricos al alcance de alumnos del segundo y tercer ciclo de Primaria. Así, por ejemplo, se puede obtener el frecuentemente utilizado geoplano ortométrico de 3x3 puntos. Por otra parte, se pueden obtener triángulos y cuadriláteros de cualquier tipo…

Como es habitual en los materiales didácticos de DIDACTMATICPRIMARIA, se ofrece la opción de manipulación libre  así como un buen número de retos de búsqueda de polígonos que cumplan unas determinadas condiciones… Siguiendo el criterio didáctico de los que en su día denominé “geoplanos inteligentes” y “geofraccionadores”, la manipulación libre es una MANIPULACIÓN AUMENTADA dado que, de manera interactiva, se  informa de la clase de polígono obtenido así como de su área (tomando como unidad de superficie la de un cuadrado de la cuadrícula).

La semitransparencia de los diferentes polígonos obtenidos en una misma pantalla así como el que éstos sean desplazables permite compararlos entre sí por superposición. También permiten dejar ver la cuadrícula para comparar-cuantificar su área en relación con la unidad cuadrada. Las circunferencias ayudan a percibir simetrías y distancias iguales o diferentes entre puntos...Además se pueden medir con precisión distancias y longitudes con cualquier orientación mediante la regla graduada... Todos estos son aspectos de indudable interés didáctico para ayudar a descubrir relaciones geométricas. Así, por ejemplo, los puntos de intersección y centros de dos circunferencias secantes siempre son los vértices de un rombo...

Aún incidiendo de lleno (y de manera no rutinaria) en la CLASIFICACIÓN DE POLÍGONOS lo que se pretende fundamentalmente con esta aplicación es el desarrollo de LA PERCEPCIÓN ANALÍTICA del alumnado. En este sentido hay que tener en cuenta que famosos programas de enriquecimiento instrumental (como el PEI de Feuerstein, diseñado sobre la teoría de la modificabilidad estructural cognitiva y destinado al desarrollo de la inteligencia) contaban con instrumentos para trabajar la Organización de Puntos, la Percepción Analítica y la Orientación Espacial.


Por otra parte, la actividad que aquí se propone y promueve es tan antigua como el ser humano. Desde los albores del nacimiento del ser humano éste ha mirado el firmamento de noche y las estrellas (puntos) le han servido de estímulo para su inteligencia, creatividad y fantasía al componer y visualizar mentalmente  figuras obtenidas uniendo puntos (estrellas)…

14 febrero, 2016

Hexágono regular modular. Investigación geométrico-numérica.

Ya en otras ocasiones he tratado sobre "Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en Primaria". Para el hexágono regular modular en concreto, en el documento, en .pdf, "Uso creativo de la escuadra y cartabón" se ilustran otras posibilidades diferentes a las que se implementan con esta aplicación.

Por otra parte, ya he tratado anteriormente sobre los que yo denomino "geofraccionadores" y "pizarras geométricas". Varios modelos de geofraccionadores los incluyo en "Kit internivelar para la enseñanza-aprendizaje de fracciones, decimales y porcentajes"...

"Hexágono regular modular" es una aplicación dedicada al favicon de este blog, que no es sino un hexágono regular formado por 36 módulos congruentes que son "cartabones" (triángulos rectángulos escalenos de ángulos 30º, 60º y 90º). He querido ofrecer aquí modelos interactivos del mismo desde dos perspectivas diferentes: utilizándolo como pizarra geométrica (en este caso las figuras se obtienen coloreando números enteros de módulos) y como geoplano (las figuras se obtienen pulsando ordenadamente sobre los puntos sensibles que son vértices o nodos de la malla triangular correspondiente).

Dado que el  Planteamiento de pequeñas investigaciones en contextos numéricos, geométricos y funcionales, valorando su utilidad en las predicciones... es un contenido que se repite en todos los ciclos de Primaria, he enfocado el diseño de "Hexágono regular modular" de manera que ofrezca un gran potencial didáctico, para favorecer que los/as alumnos/as investiguen, para facilitarles que descubran y creen...

Lo he experimentado con mis alumnos/as de 4º de Primaria y, sencillamente, les encanta. Han realizado todos los retos propuestos sobre división de figuras en partes congruentes, han diseñado una buena cantidad de rompecabezas hexagonales,...y se han divertido buscando todos los tamaños de rectángulos posibles...


No es difícil constatar algunas características esenciales presentes en la práctica totalidad de las aplicaciones de DIDACTMATICPRIMARIA:
  • La integración de las fases manipulativa, gráfica y simbólica. Ello se traduce en manipulaciones  realmente ágiles, eficaces, ordenadas y limpias (sin elementos de distracción) basadas en la excelente interactividad de los modelos gráfico-dinámicos sobre los que se actúa. Esto, indudablemente, funciona y  favorece que se manipule en cualquier nivel o etapa.
  • La posibilidad de llevar a cabo una manipulación libre orientada. Las manipulaciones libres son manipulaciones “aumentadas” en el sentido de que se da alguna información matemática adicional y dinámica (por lo general de naturaleza numérica  -simbólica-) que es relevante para reflejar las acciones realizadas con los modelos y/o sus consecuencias… Se contempla la manipulación libre como un espacio para la introducción lúdica de conceptos, para la expresión y fomento de la creatividad del alumnado, para favorecer el aprendizaje autónomo y semidirigido, para la exploración y el descubrimiento, para la investigación… Pero no se trata sólo de que el alumnado explore, sino de facilitar, también, que lo haga el profesorado, que pueda proponer sus propias actividades y retos creando el necesario conflicto cognitivo acorde con el nivel de sus alumnos/as… Se prestan así, de una manera especial, al aprendizaje entre iguales informal. Contemplar la manipulación libre orientada dota a las aplicaciones de una gran versatilidad para el profesorado  y de un mayor potencial didáctico…No se trata de aplicaciones lineales en las que todas y cada una de las actividades están prefijadas. Por el contrario, permiten volver a ellas numerosas veces, con diferentes grados de profundización.
  • La enorme profusión y diversidad de modelos gráfico-dinámicos diferentes puestos al servicio de un enriquecimiento real de las clases de matemáticas. Esto repercute directamente en una más rica concepción del área,  tanto por parte de docentes como de alumnos. Se diversifica la naturaleza del quehacer matemático del alumno (cosa tan necesaria ante la profusión de aplicaciones matemáticas excesivamente fragmentadas basadas en la simple asociación, o en la respuesta múltiple, o en la simple introducción de datos y corrección de respuestas) permitiendo que que el alumnado trace, coloree, desplace, gire; que exprese, que calcule, que compare, que mida, que corte, que pegue, que visualice, que experimente, que transforme, que construya y cree, que investigue... 
  • Por otra parte, la riqueza de modelos gráfico-dinámicos es una importante vía para la introducción de innovaciones  en el currículo de matemáticas, una forma de demostrar que las aplicaciones_TICs en matemáticas pueden ofrecer nuevos escenarios con nuevas posibilidades (corrección -autorregulación del proceso-, interactividad, generación aleatoria y/o pseudoaleatoria,  simulación, experimentación, mayor riqueza y dinamismo en los lenguajes de presentación, mayor variedad y control en las fases intermedias de resolución, mayor variedad en la forma de resolver un problema, etc...)