En un post que escribí hace ya más de dos años (En busca del significado. Operaciones combinadas en Primaria. ¿Por qué? ¿Para qué?) ilustraba con numerosos ejemplos que la práctica totalidad de las aplicaciones_TIC que tratan las operaciones combinadas lo hacen de una manera descontextualizada ( al margen de la resolución de problemas) y con un enfoque convergente, meramente instructivo (la expresión algebraica es algo dado al alumno, ajena a él; se busca la interpretación correcta única, la correcta decodificación basada en el uso de convenios relacionados con la jerarquía de las operaciones…).
Las operaciones combinadas se presentan, efectivamente, como algo dado a los alumnos para que éstos las interpreten pero no como producción o construcción de los propios alumnos haciendo uso del lenguaje matemático en el contexto de resolución de problemas. Si bien la correcta interpretación (decodificación) es necesaria, no es suficiente para desarrollar niveles superiores de competencia matemática relacionada con el dominio progresivo y contextualizado del lenguaje simbólico..
Si además tenemos en cuenta que las soluciones numéricas, en nuestra sociedad tecnológicamente avanzada, son casi exclusivamente dadas como expresiones alfanuméricas (operaciones combinadas) que los procesadores matemáticos de calculadoras, computadoras y otros muchos dispositivos electrónicos resuelven numéricamente, se hace más patente la necesidad de un nuevo enfoque en la didáctica de las operaciones combinadas (que no parecen sostenerse como un tópico matemático aislado e independiente de otros…)
Por otra parte, he comentado en diferentes artículos de mi blog que desarrollar aplicaciones TIC sobre resolución de problemas consistentes en baterías de problemas con comprobación de la solución (entendida como un número) no supone un gran avance con respecto a una batería de problemas propuestos en material impreso (o en algún formato digital equivalente). Las aplicaciones TIC sobre resolución de problemas deben ir más allá, buscando incidir interactivamente en el meollo del proceso de resolución…
El modelo de resolución de PAEV que propone esta nueva aplicación pone el énfasis en la producción, por parte de los alumnos y alumnas, de expresiones algebraicas (operaciones indicadas) que pueden considerarse ya soluciones del problema. No obstante, la aplicación, para cada problema diferente, evalúa tanto la expresión algebraica producida como el número dado como solución... Evidentemente la aplicación implementa un nivel deseable para alumnos del tercer ciclo de la Etapa Primaria. Además, aunque no se expliciten las relaciones entre magnitudes (análisis y síntesis) éstas han de realizarse ineludiblemente para poder resolver correctamente el problema propuesto. Es por ello que se recomienda que antes se hayan trabajado otras aplicaciones que pongan de manifiesto el análisis síntesis en la resolución de PAEV, como las que se tratan en post anteriores a éste en este mismo blog.
Basta experimentar con la aplicación para darse cuenta de que el paso o traducción de las relaciones implícitas en el enunciado del problema a su expresión algebraica no es precisamente un proceso convergente. Muy al contrario, se trata por lo general de un proceso divergente y, por tanto, creativo… Para ilustrar esta afirmación podemos analizar un ejemplo:
Las siguientes expresiones algebraicas, entre otras, serían respuestas válidas atendiendo a las restricciones que impone la aplicación (la expresión algebraica sólo puede utilizar datos presentes en el enunciado, es decir, no puede contener números que sean resultado de un cálculo previo con datos; un determinado dato, por lo general, aparece una sola vez en la expresión,… ):
1.- ((49 x 10) : 280) : 72.- ((10 x 49) : 280) : 73.- ((49 x 10) : 7) : 2804.- ((10 x 49) : 7) : 2805.- (49 x 10) : 280 : 76.- 49 x 10 : 280 : 77.- 49 x 10 : 7: 2808.- (49 x 10 : 280) : 79.- (49 x 10 : 7): 28010.- 49 x (( 10 : 7): 280)11.- 49 x (( 10 : 280): 7)
Lo primero que salta a la vista es que podemos hacer uso exclusivamente de paréntesis estrictamente necesarios o bien utilizar también paréntesis “personales” que sirven para reforzar la consideración de una determinada cantidad de una magnitud creada durante la fase de análisis/síntesis que no aparece de forma explícita en el enunciado del problema o bien para dar cuenta de la estrategia seguida para llegar a la solución…
Mientras que en 1, por ejemplo, se ha calculado primero el arroz total que corresponde a cada persona durante una semana, en 3 se ha calculado primero el arroz total que corresponde a todo el campamento en un día… Personalmente, encuentro que las expresiones 1 y 3 son más significativas que sus correspondientes 6 y 7, respectivamente. Y esto es, precisamente, porque hacen uso de paréntesis que aún no siendo estrictamente necesarios sí que aportan significado.
Es precisamente la economía de paréntesis la que puede dar problemas y la que da origen a convenios en la realización de determinadas secuencias de cálculo, como se ilustra en la imagen. La aplicación da por válida la expresión 49 x 10 : 280 : 7. Sin embargo puede que el alumno no realice correctamente la secuencia de cálculos. Es por ello que la aplicación también comprueba el valor numérico de la expresión algebraica.
Desde un punto de vista técnico, contemplar la divergencia en las respuestas correctas dificulta considerablemente el código y diseño de la aplicación… Pero merece la pena una aplicación así ya que favorece especialmente que el problema sea captado de manera global haciendo más patente la estructura del problema.
Los problemas que se proponen en esta aplicación manejan datos numéricos realistas y coherentes con las situaciones problemáticas presentadas. Se pretende, además, que los alumnos realicen los cálculos en línea, no en columnas, sobre la propia expresión algebraica. Para ello, se ha habilitado una zona de escritura “a mano”, que puede utilizarse tanto para ensayar la expresión algebraica solución como para realizar los cálculos.
Cuando se utiliza en clase, con la PDI, es necesario que los niños y niñas realicen el análisis/síntesis del problema y justifiquen oralmente el proceso de resolución seguido.
Una aplicación que complementa perfectamente a ésta es "ASOCIA":
Una aplicación que complementa perfectamente a ésta es "ASOCIA":
Acertado análisis y estupenda aplicación, eres un genio en el tema!, felicidades y gracias, lo pasaré al tercer ciclo que por suerte cuentan con PDI.
ResponderEliminarUno de los errores que se comenten en el aprendizaje matemático, desde infantil es el desconocimiento del lenguaje matemático y sus correspondientes expresiones algebraicas aplicadas a sus propias experiencias.
Cambiando de tema (por curiosidad), te dio a ti clase Fernando Rosas en el insti? a mi sí, su enfoque matemático iba por aquí, aunque con tiza en mano. Fue de los mejores profesores.
Saludos.
Gracias, Alicia, por tu elogioso comentario. No, a mi no me dio clase Fernando Rosas pero tuve, por suerte, también buenos profesores de Matemáticas.
Eliminar