Mostrando entradas con la etiqueta 3º ciclo. Mostrar todas las entradas
Mostrando entradas con la etiqueta 3º ciclo. Mostrar todas las entradas

31 mayo, 2019

Patrones numéricos, geométricos,...y álgebra básica.

Patrones numéricos, geométricos,...y álgebra básica.



Los patrones o regularidades, de todo tipo, son, sin duda alguna, la esencia de las matemáticas. Obviamente están presentes en todos los tópicos matemáticos y en todos los niveles, desde la matemática más básica a la más avanzada.

La enseñanza-aprendizaje de la matemática debe apoyarse continuamente en ellos, favoreciendo su descubrimiento, poniéndolos de manifiesto y utilizándolos… pues permiten adivinar, predecir, generalizar,...

En las aplicaciones de Didactmatic siempre se ha cuidado mucho este aspecto. ¿Por qué, entonces, desarrollo una aplicación específica, como ésta, sobre patrones?

Al tratarse de una aplicación (macroaplicación, mejor dicho) dirigida a alumnos/as del 3º ciclo de Pimaria, se busca y se facilita un grado de generalización adecuado de los mismos que se hará, siempre adecuándose al nivel de los/as alumnos/as, a través del lenguaje algebraico, el lenguaje de las matemáticas, sobre todo a través de la expresión de los términos generales de las series aritméticas que se tratan.

Por otra parte, se incluyen patrones o regularidades, íntimamente relacionados, que no es frecuente incluir en el currículo de matemáticas, y que son bastante estudiados por la matemática recreativa: patrones o regularidades en el calendario; patrones que aparecen cuando colocamos los números ordenados de una serie aritmética en tablas o matrices (filas y columnas); patrones en cuadrados mágicos; patrones en números figurados (representados por puntos o circulitos con una especial distribución en el plano- y que favorecen actividades de visualización, comparación y argumentación de diferentes procedimiento de recuento-); patrones geométricos (en construcciones planas y poliedros) ligados a series aritméticas; disecciones específicas de polígonos (para obtener a partir de 4 polígonos unitarios idénticos un polígono semejante a doble escala lineal); regularidades presentes en diagramas de factorización (que son un tipo específico de números figurados);  patrones para generalizar la solución de un problema, etc…

En definitiva, matemática relevante a la vez que recreativa, visual, interactiva, creativa, manipulativa, innovadora, …

Hace unos días, una colega docente de Lima (Perú) me comentaba que con las aplicaciones de DidactMatic ella aprendía a la par que sus alumnos/as. Y así debe ser, al menos para la gran mayoría de maestras y maestros, y no debe ser motivo de pudor ni de considerarse un docente mediocre, ni mucho menos. 
(Desde aquí un especial saludo a todos los docentes peruanos. Ese encantador y enigmático país es, después de España, el que más aprovecha las aplicaciones que ofrezco online)
Soy consciente de que muchos de los docentes que imparten el área de matemáticas, por razones diversas, no han tenido la oportunidad de vivenciarlas, ni de recrearlas, ni de  explorarlas y descubrir sus conexiones y la diversidad de sus procedimientos y métodos en cada uno de los bloques de contenidos… Si no se ha ”vivido” la Geometría, por ejemplo, se tendrán pocas expectativas en relación con este bloque… y se acabará haciendo, lo de siempre, algunas actividades de simple reconocimiento… 





12 mayo, 2019

Recuentos aproximados y estadística básica.

Recuentos aproximados y estadística básica.



Son muchas las situaciones reales de la vida en las que es prácticamente imposible, o excesivamente engorroso, o lento y poco práctico, realizar un recuento exacto de elementos: recuentos de microbios en un cultivo, recuentos de células sanguíneas en un análisis, recuentos de personas en un evento, recuento de árboles en una zona, etc...(se podrían poner muchos ejemplos diferentes en los ámbitos de las Ciencias naturales y las Ciencias sociales). En estos casos, se utilizan procedimientos para realizar un recuento aproximado más rápido, más cómodo, y con garantías de una buena aproximación al valor real de los elementos que quieren contarse.

El recuento aproximado, sus procedimientos y los múltiples contextos en que se lleva a cabo, incide directamente en el desarrollo de la Competencia matemática y competencias básicas en ciencia y tecnología. Podemos abordar básicamente estos procedimientos en el 3º ciclo de Primaria diseñando un contexto simple de recuento de cantidades diferentes de puntos (que pueden representar elementos reales de muy diversa naturaleza) que se distribuyen al azar en una determinada zona.

Si esa zona está dotada de una cuadrícula o rejilla auxiliar, cuyo número de celdillas se puede variar con facilidad, la cuadrícula, sin duda, sugerirá un primer procedimiento para analizar: contar el número de puntos de una determinada celdilla y multiplicarla por el número de celdillas. Pero, obviamente, este procedimiento ofrece un elevado rango de variabilidad en los resultados al tratarse de puntos distribuidos aleatoriamente en la zona considerada: diferentes celdillas tendrán diferentes números de puntos...¿Qué celdilla elegir? ¿En cuántas celdillas conviene dividir la zona? ¿Cómo elegir una muestra adecuada?

Esta aplicación permite variar el número de puntos objeto de recuento, variar la configuración de la cuadrícula o rejilla auxiliar, realizar tantas tandas de recuentos como se desee, introducir los valores estimados y/o calculados... Genera y registra de manera automática los porcentajes de error cometidos en cada recuento (aspecto clave en la verificación de hipótesis y en la regulación de los procedimientos utilizados) y los guarda para, al final, mostrarlos en un gráfico de puntos que permita al alumno/a valorar la evolución de su competencia en el recuento a partir de la evolución en sus porcentajes de error.

Se permite la investigación, la autorregulación del proceso y, a lo largo de las pantallas, se va facilitando la ayuda o andamiaje necesario para la mejora del mismo. Además de la subitización (en los casos en que hay pocos puntos en una determinada celdilla), el conteo directo y la comparación de cantidades,  el recuento aproximado implica otras capacidades numéricas menos elementales…Implica, esencialmente, la estimación de cantidades percibidas visualmente y su comparación. Es la capacidad para estimar cantidades la responsable del "buen ojo" que se tenga. Y este "buen ojo" es un aspecto determinante del grado de exactitud del recuento, independientemente del procedimiento realizado. Evidentemente no se considera nunca aquí como procedimiento válido aquel que conlleve la suma o conteo directo de todos los puntos.

A medida que se avanza en la aplicación se facilita el número de puntos de hasta 5 casillas seleccionadas (de un total de 25 en este caso), así como la serie de datos correspondientes a esta “muestra” y el cálculo interactivo de la media aritmética, la mediana y la/s moda/s (en caso de que exista/n). Se invita a los/as alumnos/as a aprovechar, como ellos consideren, estos parámetros estadísticos en su objetivo de reducir el porcentaje de error...

Además,  se utiliza la situación problemática (en forma de investigación abierta) para contextualizar aprendizajes conceptuales y procedimentales. Se ayuda al aprendizaje, mediante preguntas de verdadero/falso, analizando el procedimiento de obtención del porcentaje de error y su diferencia con el error cometido en un recuento; favoreciendo la comprensión de los conceptos de media aritmética, mediana y moda; favoreciendo la explicación argumentada de procedimientos seguidos y su mejora…

La aplicación no brinda "el procedimiento más adecuado". Este aspecto lo deja abierto a la discusión grupal y colectiva...


27 abril, 2019

Llenado de recipientes y razonamiento numérico proporcional.

Llenado de recipientes y razonamiento numérico proporcional.


¿Y si conectamos un cronómetro a un grifo?

Uno de los los logros terminales más importantes, en relación con las matemáticas de Primaria, es la consolidación del razonamiento numérico proporcional (entiéndase proporcionalidad directa) al final de la Etapa Primaria. No me refiero aquí a saber el procedimiento correcto para resolver una regla de tres directa mediante un algoritmo escrito, o mediante el uso de la calculadora. Me refiero a la capacidad para inferir y calcular mentalmente múltiples resultados nuevos, a partir de algún dato conocido, en situaciones en que dos magnitudes son directamente proporcionales. Esta capacidad se pone de manifiesto, de una manera incontestable, en las tablas de proporcionalidad. En las mismas no se pide la obtención de un solo dato nuevo sino que se generaliza un razonamiento que no tiene fin.

Dada la importancia que le concedo, algunas MACROAPLICACIONES ya publicadas en este blog inciden de una manera especial en  el razonamiento numérico proporcional ("Porcentajes", "Velocidad, móviles y razonamiento proporcional", "Proporcionalidad y semejanza",...), sobre todo utilizando tablas de proporcionalidad y/o colecciones de retos basados fundamentalmente en este tipo de razonamiento numérico, aportando contextos, situaciones problemáticas, simulaciones,...que no suelen  abordarse en Primaria; siempre con un enfoque innovador y creativo, muy alejado de la pura técnica calculatoria predominante...

Esta interesante aplicación persigue, también, la consolidación del razonamiento numérico proporcional, facilitando el andamiaje necesario y guiando el proceso. A la par, se realiza una interesantísima y realista conexión entre las magnitudes CAPACIDAD y TIEMPO. Si un/a alumno/a logra completar tablas de proporcionalidad directa que implican, además, el manejo competente de diferentes unidades de las magnitudes relacionadas, podemos asegurar que ese/a alumno/a ha consolidado el razonamiento numérico proporcional.

12 febrero, 2019

La numeración romana (2º y 3º ciclo de Primaria)

La numeración romana (2º y 3º ciclo de Primaria)


Nunca antes  había realizado una aplicación digital interactiva para tratar la enseñanza y aprendizaje de la numeración romana. 

Incluso en el tratamiento de un tópico como éste hay cabida para la creatividad y la innovación tecnológico-pedagógica

Una seña de identidad de las aplicaciones de Didactmatic es que no se eluden esfuerzos en el código de programación de la aplicación si ello revierte positivamente en calidad y excelencia, en una mejor  interactividad y en un mayor grado de generalización de lo tratado. La manipulación interactiva y "aumentada", el descubrimiento, la generalización y la excelencia al servicio de la enseñanza y aprendizaje de la matemática.

24 noviembre, 2018

Cálculo mental básico con números naturales (+, -, x, :)

Cálculo mental básico con números naturales (+, -, x, :)



Versión mejorada para poder introducir texto con el teclado y con los botones numéricos presentes en la pantalla de la aplicación.

Dado que se puede configurar en múltiples niveles o grados de dificultad, se puede utilizar en cualquier curso de Primaria.

Los ejercicios propuestos se generan aleatoriamente dentro del rango numérico elegido.

08 noviembre, 2018

UDI. Método de resolución de PAEV mediante el modelado algebraico con etiquetas de texto.

La  resolución  de  PAEV (Problemas Aritméticos de Enunciado Verbal) en Primaria tiene  una  larga  tradición  escolar. Basta con examinar un buen número de baterías de problemas (tanto en formato impreso como en formatos digitales e interactivos) para constatar que está  bastante consensuado y generalizado entre el profesorado un método de resolución cuyas fases podríamos codificar  así: Lectura analítica del enunciado - Aislamiento de datos e incógnita - Realización de cálculos - Valoración de la solución.

Este método es tan común que no se nos pasa por la cabeza cuestionarlo. El hecho de que sea comúnmente aceptado no significa que sea el más idóneo… (Ver la comparativa entre métodos que se incluye en la publicación)

Dada la especial relevancia de la RP en el currículo de Matemáticas de Primaria y dado que este método, al que me voy a referir en adelante como  MÉTODO ESTÁNDAR, es el más generalizado, y que incluso suele simplificarse y a veces se aplica de manera muy rutinaria, conviene analizarlo con cierta profundidad. A la par, argumentaré lo que a mi juicio son debilidades del método y cómo mejorarlas, y presentaré un método alternativo más significativo, más acorde con una sociedad tecnológicamente avanzada.  Se trata del método que vengo desarrollando hace ya más de 10 años con mis alumnos y que vengo proponiendo en espacios para la formación del profesorado:  “Resolución de PAEV mediante el Modelado Algebraico con Etiquetas de Texto."

Este método ya ha sido presentado en entradas anteriores. Pero dado que creo que es una de mis mayores aportaciones a la Didáctica de la Matemática "a pie de aula", he decidido presentarlo en forma de UDI  (Unidad Didáctica Integrada) que puede ser aprovechada, modificada y adaptada (para ello, ofrezco la descarga de la misma en formato .docx). 

Integra objetivos y contenidos de las áreas de Matemáticas y Lengua Española,  en relación con una tarea fundamental: el aprendizaje y aplicación de un método avanzado de resolución de problemas aritméticos de enunciado verbal (PAEV). Integra, fundamentalmente, subcompetencias matemáticas y lingüísticas. Incide en el desarrollo de competencias en CMCT, CCL, CSYC, CAA , CD y SIEP. 

Por otra parte, sirve para poner de manifiesto y ejemplificar cómo las aplicaciones interactivas que ofrezco en este blog pueden ser fácilmente integradas y utilizadas en UDIs como valiosos recursos para la realización de las tareas, subtareas y actividades propuestas en las mismas (individuales, grupales y colectivas) y como instrumentos para la evaluación en tanto en cuanto evidencian (para el propio alumno – autoevaluación y autorregulación del aprendizaje-, para un compañero – coevaluación- o para el docente – heteroevaluación-) buena parte del desempeño de los/as alumnos/as que queremos conseguir...  Además, brindan retroalimentación inmediata respecto al aprendizaje y desempeño logrado por el/la alumno/a y el logrado por sus compañeros en un ambiente de confianza, respeto  y ayuda mutua que facilita la expresión y el avance de todos.





02 septiembre, 2018

Capacidad y volumen. Relaciones y equivalencias de unidades




Volumen y capacidad. Relaciones y equivalencia de unidades. Didactmaticprimaria.net



Las aplicaciones ofrecidas por DidctmaticPrimaria tienen, siempre, más potencial didáctico del que aparentan y sugieren sus títulos. Sirva ésta como ejemplo que ilustra la afirmación anterior. 

A partir de agrupaciones ortoédricas policúbicas ( formadas por cubos unitarios de un centímetro cúbico de volumen que se pueden recolocar como se desee) se facilita el descubrimiento de la fórmula que permite hallar el volumen de un ortoedro: largo x ancho x alto.

Además de la manipulación libre (espacio para favorecer el descubrimiento), las propuestas basadas en la generación aleatoria de ortoedros policúbicos permite proponer y resolver retos de cálculo mental multiplicativo (volumen del ortoedro dado).

Se utilizan las regletas de Cuisenaire (o números en color) para realizar agrupaciones ortoédricas de regletas del mismo valor (conexión números-geometría). Éstas se analizan desde el punto de vista de su volumen, a la vez que se estudian los desarrollos planos de las “cajas” abiertas asociadas a cada ortoedro como recipientes cuya área total y capacidad, en mililitros, hay que calcular (agrupaciones ortoédricas – desarrollos planos de ortoedros – recipientes ortoédricos – área total – volumen y capacidad)

De manera análoga a como se tratan los ortoedros policúbicos formados por cubos unitarios, se tratan los ortoedros formados por barras de 10 centímetros cúbicos o por placas de 100 centímetros cúbicos. Se llega, así, a una visión amplia y coherente de la descomposición del decímetro cúbico en 1000 cm3, 100 barra de 10 cm3 y 10 placas de 100 cm3. (Hasta ahora sería como disponer de un decímetro cúbico desmontable y manipularlo desde diferentes puntos de vista…)

A partir del cubo de 1dm3, se construye un recipiente hueco de 1 litro de capacidad. Esto primero se asume como cierto y después se verificará de manera coherente. Se establecen las equivalencias dm3 ≡ litro,  cm3 ≡ mililitro, barra de 10 cm3 ≡ cl, placa de 100 cm3 ≡ dl y se procede a resolver retos consistentes en verter en  el recipiente cúbico (de 1 dm3), con la ayuda de un grifo, un vaso y una jeringa auxiliares, cantidades exactas de agua expresadas en diferentes unidades de capacidad o de volumen.

Pero no sólo llenamos el recipiente cúbico de agua de un grifo. Se utiliza como pluviómetro para establecer las relaciones especiales entre longitud, superficie, capacidad y volumen que permiten su correcto entendimiento. Relacionamos la “boca” de este recipiente (1 dm2) con un metro cuadrado (1 m2). Simulamos de manera realista la lluvia y el paso de tiempo acelerado. Se va registrando automáticamente la altura (en mm) del agua de lluvia , el volumen de agua de lluvia recogido en el recipiente cúbico, las precipitaciones  en litros/m2… Se observa que éste número es el mismo que el de milímetros de altura del agua en el recipiente… Se visualiza, se argumenta, se razona….

En definitiva, se facilita la enseñanza-aprendizaje de una matemática que conecta  e integra conceptos, que facilita enormemente su comprensión profunda favoreciendo la apreciación de patrones y regularidades en contextos matemáticamente relevantes, y realistas, gracias a la calidad visual e interactiva de los múltiples manipulativos que integra de manera innovadora y creativa.

 ¿Se puede ofrecer más en una aplicación de este tamaño?

Ver, también, 


19 agosto, 2018

Pentaminós, hexadeltas y tetraescuadras.

Pentaminós, hexadeltas y tetraescuadras.


¿Qué decir de las “familias de figuras” obtenidas a partir de un sencillo criterio geométrico?

Si pensamos, por ejemplo, en los diferentes niveles de organización de la materia viva (subatómico, atómico, molecular, celular, pluricelular,...) comenzamos a entender cómo lo más complejo surge de lo más simple organizado de infinidad de maneras diversas que hace posible  la  combinatoria de los elementos más simples…

El concepto de unidad es de los más abstractos en matemáticas, porque una unidad considerada a un determinado nivel es una pluralidad compleja a otros niveles (un elefante, un triángulo,…)

Pues bien, un procedimiento que guarda analogía con el que sigue la propia Naturaleza para crear su diversidad, podemos implementarlo con las "familias de figuras". Las figuras elementales serán las unidades, los "átomos" con los que se pueden formar "moléculas" más complejas...

El razonamiento espacial actúa sobre figuras geométricas por medio de operaciones básicas entre las que destacan el análisis (descomposiciones diversas de un mismo todo) y la síntesis (combinaciones diferentes de las mismas partes) teniendo en cuenta la orientación espacial de las figuras. El análisis y la síntesis son habilidades cognitivas constitutivas de nuestra inteligencia. Las utilizamos cuando leemos, cuando descomponemos y componemos números, cuando componemos y descomponemos figuras,… Desarrollan tanto nuestro pensamiento convergente (partes diferentes se organizan configurando un mismo todo final) como el pensamiento divergente, inventivo y creativo (las mismas partes se organizan en todos que son diferentes). 

Por otra parte, el razonamiento espacial no sólo es básico para disciplinas matemáticas (Geometría, Topología,...) sino que es básico en disciplinas técnicas (Arquitectura, Microelectrónica,…)

Creo que está más que justificado ofrecer en el currículo de matemáticas la posibilidad de que los/as alumnos/as jueguen con figuras tan especiales como los pentaminós, hexadeltas y tetraescuadras, que exploren posibilidades de agruparlas, etc…

El problemas es que la/s experiencia/s que se proponen como enriquecedoras para los/as alumnos/as deberían haberlas tenido antes los docentes. Esto, en la mayoría de los casos, no es así, sobre todo tratándose de experiencias geométricas… Por ello, una aplicación interactiva como ésta, esencialmente visual, dinámica y constructiva, en la que se proponen y se implementan novedosas investigaciones geométricas, resulta un instrumento ideal para facilitar esa experiencia a alumnos/as y docentes…

¡Qué la disfruten!

Ver, también,  






Geometría de la Alhambra de Granada para alumnos/as de Primaria.

Geometría de la Alhambra de Granada para alumnos/as de Primaria.


Los diseños geométricos del arte andalusí, y más concretamente del arte nazarí, se repiten en distintos formatos y superficies en los monumentos arquitectónicos emblemáticos de este arte y época. 

Probablemente sean  los alicatados de La Alhambra de Granada (Patrimonio Cultural de la Humanidad desde 1984) el tipo de ornamentación en el que más fácilmente podamos apreciar una gran variedad de armoniosas tramas geométricas realizadas con gran maestría, desde composiciones simples (basadas en la repetición de uno o dos figuras) a composiciones complejas (en las que diferentes motivos se desplazan, rotan o se reflejan para generar a su vez nuevas formas geométricas a un nivel superior).

Pero, ¿cómo podemos acercar la geometría básica de los alicatados de la Alhambra a los/as alumnos/as de Primaria? ¿Puede un/a alumno/a de Primaria identificar, conocer, construir y experimentar con algunas de las teselas más utilizadas en la realización de mosaicos? ¿Puede comprender y realizar diseños de lacería, esas intrincadas tramas geométricas con bandas que se entrecruzan?

Esta innovadora aplicación propone una exploración visual, lúdica, dinámica y constructiva que permitirá que los/as alumnos/as de Primaria conozcan mucho mejor e interioricen de manera significativa la geometría ornamental básica de la Alhambra. A la par, estarán trabajando el razonamiento geométrico a través del trazado, composición y descomposición de figuras, el reconocimiento y utilización de patrones geométricos y las isometrías o movimientos en el plano.

Nunca antes, que yo sepa, se había hecho así. Si bien las teselas ligadas a los más “famosos”, divulgados y/o asequibles mosaicos (“avión”, “clavo”, “hueso”, “pajarita”, “murciélago”, molinete”,…) han sido bien presentadas y analizadas por diferentes docentes de Secundaria, no me consta que exista ninguna aplicación digital que permita realizar con facilidad y total precisión estos mosaicos… menos aún los diseños de lacería.

He retomado aplicaciones mías antiguas, de hace ya más de 15 años, donde presentaba dinámicamente algunos de estos mosaicos, pero no de manera constructiva. Las he mejorado sensiblemente… La principal innovación es que permite construir con suma facilidad los mosaicos aludidos y variantes que permiten comprender cómo lo complejo se obtiene como variante de lo simple. En especial, cabe destacar lo fácil que se hace aquí la relación entre una tesela diseñada para pavimentar el plano y su correspondiente tesela para la realización de la lacería asociada al mismo…

Se facilita material imprimible y fotocopiable.

Ver, también, 


13 julio, 2018

Resolución de Problemas. Búsqueda exhaustiva de soluciones posibles. Simulación concreta y abstracta. Construcción y representación de soluciones…

 “Resolución de Problemas. Búsqueda exhaustiva de soluciones posibles. Simulación concreta y abstracta. Construcción y representación de soluciones…”.



 “Resolución de Problemas. Búsqueda exhaustiva de soluciones posibles. Simulación concreta y abstracta. Construcción y representación de soluciones…”. Bajo este título tan largo y abierto he querido agrupar una serie de propuestas de situaciones problemáticas caracterizadas por tener múltiples soluciones (o una solución múltiple) o bien por presentar un espacio de búsqueda de una única solución relativamente complejo,  con diferentes estados posibles de los diferentes elementos que configuran la solución…

Lo que caracteriza a las propuestas que aquí se incluyen es que se facilita la construcción de la solución por simulación, o la estrategia de tanteo sistemático al permitir descubrir  direcciones que van encerrando la respuesta en un rango de posibilidades cada vez más pequeño…Todo ello mediante esquemas, diagramas o representaciones interactivos que permiten la manipulación de elementos y la simulación.

Son numerosas las propuestas de situaciones de este tipo que podemos encontrar en otras aplicaciones ofrecidas por  DidactmaticPrimaria: problemas abiertos sobre relaciones cuantitativas implementados con dinero (“Relaciones numéricas_100”), tanteo sistemático por acotación del error (“Pesa pensando”), problemas sobre relaciones de orden y tablas lógicas (“REPRESENTAR.  Una poderosa estrategia en la resolución de problemas”), generación exhaustiva de figuras asociadas con su valor numérico (“Geofraccionador”, “Geoconstructor”,…), retos topológicos con múltiples soluciones, etc…

Es por ello que aquí recojo, en buena medida, situaciones problemáticas de carácter combinatorio, no tratadas en otras aplicaciones, a modo de interesantes, innovadoras y adecuadas investigaciones para alumnos/as del tercer ciclo de Primaria, que inciden plenamente en contenidos del currículo de Matemáticas:

1.6. Desarrollo de estrategias personales para resolver problemas e investigaciones.
1.7. Utilización de recursos informáticos para la realización de actividades y la comprensión de contenidos matemáticos.
1.13. Utilización de recursos informáticos para la realización de actividades y la comprensión de contenidos matemáticos.
1.11. Confianza en las propias posibilidades y espíritu de superación de los retos y errores asociados al aprendizaje matemático.
1.5. Resolución de situaciones problemáticas abiertas: Investigaciones matemáticas sencillas sobre números, cálculos, medidas, geometría y tratamiento de la información, planteamiento de pequeños proyectos de trabajo. Aplicación e interrelación de diferentes conocimientos matemáticos. Trabajo cooperativo. Acercamiento al método de trabajo científico y su práctica en situaciones de la vida cotidiana y el entorno cercano, mediante el estudio de algunas de sus características, con planteamiento de hipótesis, recogida, registro y análisis de datos y elaboración de conclusiones. Estrategias heurísticas: aproximación mediante ensayo-error, reformular el problema. Desarrollo de estrategias personales para resolver problemas e investigaciones y pequeños proyectos de trabajo.
1.8. Desarrollo de actitudes básicas para el trabajo matemático: esfuerzo, perseverancia, flexibilidad, estrategias personales de autocorrección y espíritu de superación, confianza en las propias posibilidades, iniciativa personal, curiosidad y disposición positiva a la reflexión sobre las decisiones tomadas y a la crítica razonada, planteamiento de preguntas y búsqueda de la mejor respuesta, aplicando lo aprendido en otras situaciones y en distintos contextos, interés por la participación activa y responsable en el trabajo cooperativo en equipo.
1.7. Planificación del proceso de resolución de problemas: comprensión del enunciado, estrategias y procedimientos puestos en práctica (hacer un dibujo, una tabla, un esquema de la situación, ensayo y error razonado, operaciones matemáticas adecuadas, etc.), y procesos de razonamientos, realización, revisión de operaciones y resultados, búsqueda de otras alternativas de resolución, elaboración de conjeturas sobre los resultados, exploración de nuevas formas de resolver un mismo problemas, individualmente y en grupo, contrastando su validez y utilidad en su quehacer diario, explicación oral de forma razonada del proceso de resolución, análisis coherente de la solución, debates y discusión en grupo sobre proceso y resultado.
1.10. Acercamiento al método de trabajo científico y su práctica en contextos de situaciones problemáticas, mediante el estudio de algunas de sus características, con planteamiento de hipótesis, recogida y registro de datos en contextos numéricos, geométricos o funcionales, valorando los pros y contras de su uso.
1.13. Utilización de herramienta y medios tecnológicos en el proceso de aprendizaje para obtener, analizar y selección información, realizar cálculos numéricos, resolver problemas y presentar resultados, desarrollar proyectos matemáticos, haciendo exposiciones y argumentaciones de los mismos dentro del grupo. Integración de las tecnologías de la información y la comunicación en el proceso de aprendizaje matemático.

Probablemente algunos lectores se asusten o se sorprendan de que proponga retos de naturaleza combinatoria en Primaria. No deben asustarse ni sorprenderse. El enfoque de las propuestas es más cualitativo que cuantitativo. Se hace hincapié en  ¿cuáles?” y no en “¿cuántas?”. ¿Por qué? Veamos un ejemplo comentado relacionado con la propuesta Repartos”:
Imaginemos que nos plantemos repartir 5 pastelillos en 3 platos (cada uno asociado a un/a niño/a), de manera que no haya ningún plato vacío. Si preguntamos “¿cuántos repartos diferentes podemos realizar?” estoy seguro de que la mayoría de los lectores no sabrían dar una respuesta relativamente rápida y, menos aún, justificada conceptualmente, a pesar de que el problema maneja unos números muy sencillos… En cambio, si solicitamos posibles soluciones (repartos diferentes posibles), rápidamente barajarán soluciones posibles, como 3-1-1 y  2-2-1, e imposibles, como 4-1-0, y no tardarán en descubrir que la descomposición 3-1-1 conlleva tres repartos diferentes (según el plato al que le correspondan los tres pastelillos): 3-1-1, 1-3-1, 1-1-3.  Lo mismo ocurre para la descomposición 2-2-1. Pues bien, ¿han necesitado saber que los tres casos ligados a cada una de las dos descomposiciones es justamente el número de permutaciones con repetición de tres elementos en los que uno se repite dos veces? ¡No! No es necesario este conocimiento de Secundaria para abordar el problema. Precisamente a  “¿cuántas?” se responde al final, simplemente contando los casos obtenidos por búsqueda exhaustiva, o bien se facilita el número total de casos posibles de antemano, para facilitar la resolución….

Esta argumentación tiene una excepción, la del producto cartesiano de dos conjuntos (“Cabezas diferentes”) y su generalización, la regla de multiplicar (“Candado. Código secreto”). Aquí es más fácil determinar el número de “variaciones” que las propias “variaciones”. De hecho es de las pocas cuestiones combinatorias que se proponen desde edades muy tempranas: “De cuantás maneras podemos vestir al osito con pantalón y camiseta si disponemos de dos pantalones diferentes y tres  camisetas diferentes?”

Además, las cuestiones combinatorias se abordan de manera inductiva, con casos particulares graduados en dificultad y en número de posibilidades (“Permutando”). Así, se va asumiendo como cierto que para dos objetos diferentes existen dos permutaciones diferentes, que para tres objetos existen seis permutaciones, que para cuatro objetos existen 24, etc… A pesar de que nos interesa más determinarlas cualitativamente ( porque conlleva el surgimiento de algoritmos personales de búsqueda), no se elude la posibilidad de que el/la alumno/a capte el patrón o regularidad inherente al número de permutaciones posibles ( 2 = 2x1; 6= 3x2x1; 24= 4 x 3 x 2 x1) ni  su simbología (2!=2x1; 3!=3x2x1; 4!=4x3x2x1; ….)

En “Macedonia de frutas” se abordan las “combinaciones” de varios elementos tomados de tantos en tantos: subconjuntos de dos frutas diferentes cuando se dispone de un total de seis frutas diferentes, por ejemplo, en los que el par pera-manzana es el mismo que el par manzana-pera, es decir, que no importa el orden…Es un reto bastante apropiado para alumnos/as de estas edades. ¡Y les encanta abordarlo! Además se transfiere lo aprendido a otros problemas similares y se conecta numeración y geometría: El número de combinaciones de 5 elementos tomados de dos en dos es igual al número de segmentos (lados + diagonales) de un pentágono.

En otras propuestas de carácter combinatorio (“Caminos_posibles”, Caminos tramos ‘V’ y ‘H’, Figuras posibles”) responder a “cuántas” sería aún más difícil que en los casos anteriores dado que una misma figura puede aparecer con diferentes orientaciones espaciales o intervienen cuestiones geométricas y/o topológicas que condicionan el número de posibilidades y no son fáciles de explicar…¡Pero se facilita, interactivamente, la obtención de todos los casos posibles! Además, se insiste, en la codificación de las soluciones (mediante letras y/o números).

En “Dominó_igualación” se persigue que el alumnado distinga los casos en que puede haber solución de aquellos que no tienen solución así como que descubra una estrategia aritmética eficaz para resolver los casos con solución. “Equilibrio_números_balanza” es similar, aunque algo más difícil si no se ha descubierto la estrategia aritmética para la igualación de dos cantidades cuya suma es un número par.

Parking” es la aplicación más lúdica. Se trata de un juego bastante conocido. La solución, para cada reto propuesto, no es obvia. Implica pensar de atrás hacia adelante y barajar diferentes estados de los elementos que intervienen en la solución.

En "coloca" se abordan situaciones de representación de la solución con la ayuda de  diferentes diagramas interactivos que tratan sobre situación espacial y problemas con relaciones de orden entre una y dos variables...

Ver, también, 





08 abril, 2018

GEO_BASIC_2D

"Geo*Basic*2D", de Didactmaticprimaria.net




GEO_BASIC_2D combina un conjunto de 12 geo_herramientas básicas para la realización de construcciones geométricas bidimensionales fijas (como si las trazáramos en una pizarra analógica). Además cuenta con borrador y escritura a mano. 

Desde el inicio de su diseño se ha concebido para ser el equivalente digital ampliado de ese conjunto de instrumentos de trazado geométrico que no siempre tenemos disponible en las aulas, o no siempre en buen estado. ¡Con qué facilidad se pierde, por ejemplo, la ventosa del compás de pizarra! (lo digo al menos por mí). Pero pretende ir mucho más allá...

Facilita enormemente la realización de las construcciones geométricas aportando nuevas posibilidades y funcionalidades que no son posibles con las herramientas analógicas equivalentes: colocación exacta de puntos medios, borrado selectivo de  todos/as los/as segmentos, rectas, semirrectas y circunferencias; borrado de trazados uno a uno comenzando por el último, tramas de puntos interactivas, poligonal dinámica mostrando longitudes de segmentos, posibilidad de construir fácilmente polígonos desplazables (tantos como se desee, iguales o diferentes, a partir de una trama de puntos o a partir de los vértices de un polígono regular configurable); tramas ortométrica e isométrica interactivas, fácil configuración de colores y grosores de segmentos; rectas desplazables, rectas paralelas y perpendiculares pulsando sobre puntos de la geo_escuadra o del geo_cartabón, fácil y exacta medición y construcción de ángulos, área interactiva de los polígonos trazados sobre tramas, fácil trazado de circunferencias y arcos, etc...

No pretende ser el extraordinario Geogebra (en su versión para Primaria), ni tan siquiera el C.a.R u otro software análogo. En este caso las construcciones realizadas no son escalables ni girables. No es que no apueste por una geometría dinámica, no. Pero no ha sido ese el propósito de esta aplicación que hace tiempo me fue sugerida por un par de lectores. Se trata de reunir productivamente herramientas geométricas que ya he utilizado en otras aplicaciones. Se ha optado por las construcciones fijas, por reducir la dificultad, por buscar un equilibrio adecuado entre sencillez de uso, vistosidad y potencial de construcción, de manera que resulte adecuado en 2º y 3º ciclos de Primaria. Así, por ejemplo, los puntos de intersección entre diferentes elementos de trazado se determinan visualmente, como se haría con construcciones realizadas en una pizarra analógica.









En principio permite realizar cualquier construcción geométrica fija con regla (no graduada) y compás (o con regla compás y escuadra), sobre todo las adecuadas a la Etapa Primaria: mediatriz de un segmento, bisectriz de un ángulo, triángulo equilátero y hexágono regular, cuadrado y otros polígonos regulares y estrellados...Se pueden formar con suma facilidad toda clase de triángulos, cuadriláteros y otros polígonos permitiendo cuantificar sus perímetros  y sus áreas en diferentes unidades de longitud o superficie; facilita el fraccionamiento creativo de polígonos, la realización de diseños geométricos con intencionalidad artística, etc... 

Espiral. Ejemplo de precisión y facilidad de manejo  del geo_compás. La aguja del compás se sitúa con total precisión sobre el punto deseado.

Trabajos realizados por alumnos/as de 6º  (CEIP. Blas Infante, Lebrija-Sevilla) a partir de la visualización, a través de la PDI,  de la construcción previamente realizada con GEOBASIC_2D

Ilusión óptica. Ejemplo de coloreado de polígonos. Se muestran las geo_herramientas seleccionadas así como el despliegue interactivo de otras subherramientas configurables  (grosor de línea, color,  tipo y tamaño de trama de puntos,...)


CUADRILÁTEROS diferentes de igual área sobre trama ortométrica.


Es ideal para la PDI y su utilización no está reñida con las versiones de Geogebra para Primaria.

En CUERPOS GEOMÉTRICOS se ofrece una amplísima colección de manipulativos virtuales 3D, dinámicos e interactivos, así como herramientas de construcción 3D (geocubo, geoprisma,..) también basados en geometría dinámica.

En ARQUIGEOM  se aborda la  construcción 3D con elementos desplazables tridimensionales en perspectiva isométrica.

En GEOMETRÍA 3D se aborda la construcción policúbica con cubos en perspectiva caballera.

La práctica totalidad de las aplicaciones que he desarrollado en relación con la geometría plana  incorporan, cada una de ellas, numerosos manipulativos virtuales dinámicos e interactivos: ángulos, semejanza y proporcionalidad, área de figuras planas, circunferencia y trazado de polígonos polígonos regulares,...

En una línea parecida a la de GEO_BASIC_2D se sitúan aplicaciones como GEOPLANO INTELIGENTE, GEO_CONSTRUCTORTRAMAS INTERACTIVAS(), MULTIGEOPLANO ,...(Esta última aplicación está basada en los puntos de intersección dinámicos de un conjunto de circunferencias)...