18 enero, 2015

El gran error en la enseñanza de matemáticas, según J.A. Fernández Bravo.

El día 8 de enero, El Confidencial publicó un artículo titulado "Uno de nuestros mejores profesores señala el gran error en la enseñanza de matemáticas", en el que José Antonio Fernández Bravo, decano de la Facultad de Ciencias Sociales y de la Educación de la Universidad Camilo José Cela, analiza los errores fundamentales que se dan en la enseñanza de las matemáticas a la vez que propone ocho ideas para mejorarla...

José Antonio Fernández Bravo. Fuente: El Confidencial.
José Antonio Fernández Bravo. Fuente: El Confidencial.
"...Quizás no interese que se genere pensamiento, que se genere autonomía, observación y crítica en el ciudadano. Quizás sea todo una pantomima y un disfraz con un telón de fondo en el que dice ‘no me interesa que pienses’, porque hoy ya se sabe cómo se puede generar pensamiento”.
La sexta idea, que me interesa especialmente, se recoge así en este artículo:

6. La tecnología debe ser un medio, nunca un fin.
“Las nuevas tecnologías mal utilizadas están evitando la manipulación de materiales, el entendimiento y la comprensión”, asegura Fernández Bravo con rotundidad. ¿Qué estamos haciendo con las nuevas tecnologías? Según el decano, “sustituir el papel impreso del libro por la misma imagen no trabajada del libro que se ve en la pizarra digital. Se puede enseñar mejor con dos palos y tres piedras que con las modernidades más grandes, porque en definitiva no hay avance mientras no haya mejores resultados con menos esfuerzo”.
Entiendo perfectamente lo que quiere decir J.A. Fernández Bravo, y pienso que es cierto en gran medida, pero tal vez lo haya expresado de forma muy  general y rotunda sin contemplar, como excepción, el loable y muy poco apoyado esfuerzo que bastantes docentes, convertidos también en desarrolladores de software educativo, estamos realizando en este sentido movidos por el "Principio de la Tecnología" en la educación matemática. Una minoría de docentes, por lo general silenciosa y silenciada, que tiene que hacer "juegos malabares" para integrar equilibradamente conocimientos curriculares, conocimientos didáctico-pedagógicos y conocimientos tecnológicos para conseguir aplicaciones TIC que vayan más allá del libro de texto y que favorezcan un uso constructivo y no instructivo de las TICs; desarrollando materiales didácticos digitales que concreten e ilustren el tratamiento de resultados ampliamente admitidos por la Didáctica de la Matemática; desarrollando materiales digitales eficaces, a pie de aula, para el tratamiento de la diversidad, el aprendizaje autónomo o semidirigido y por descubrimiento; materiales que reduzcan el esfuerzo de profesores y alumnos a la vez que faciliten un mejor tratamiento tanto de los principios internacionalmente admitidos para la educación matemática como de aspectos relevantes del currículo de esta área; aplicaciones digitales enfocadas a hacer realidad una matemática intuitiva, dinámica, interactiva... así como al logro de mayor competencia matemática...Materiales didácticos virtuales que también demandarán su derecho a formar parte de la historia de las materiales educativos para la enseñanza-aprendizaje de la matemática y que no están ya en la esfera del "esto es lo que se debe hacer" (más teórica y especulativa) sino en la del  "esto es lo que yo he hecho", que permite avanzar realmente mediante el análisis y mejoras evidentes de lo existente...

Me voy a permitir aquí añadir, a las ocho mencionadas por J.A. F. Bravo, una idea más para la mejora de la enseñanza de las matemáticas:

9. La formación del profesorado debe corregir el actual desequilibrio entre teoría y práctica.
Creo que los hábitos asociados a la economía especulativa (en su acepción de fraude) propia de los tiempos en que vivimos han influenciado nuestra manera de aceptar, entender y afrontar todos los ámbitos de lo social. Se pone más en valor la apariencia que la esencia. Son las "autoridades", en todos los ámbitos de lo social, quienes crean "las verdades" y no "las verdades" las que se constituyen en "autoridades". 

En el ámbito de la formación del profesorado también hemos asistido a un exceso de especulación (en su acepción de teoría, reflexión) en tanto en cuanto muchas acciones formativas (también demasiadas "investigaciones" y tesis) se dan en forma de "paquetes teóricos" justificados y avalados por el prestigio (+ influencia + marketing) de los ponentes y armados de manera coherente pero que no necesariamente tienen un fin práctico (a pesar de que siempre se puedan dirigir justificadamente hacia la mejora de la calidad de la enseñanza) ni tienen que ser contrastados en la realidad (o no tiene sentido hacerlo debido al número de variables de que depende)... Siendo la reflexión teórica sobre la enseñanza-aprendizaje algo muy necesario, creo firmemente que es más necesario corregir el desequilibrio entre la teoría y la práctica educativa. La formación del profesorado en matemáticas debe dar más peso al análisis crítico, a pie de aula, de "variables educativas relevantes", a través del contraste de opiniones, del estudio de actuaciones y producciones concretas del profesorado...


07 enero, 2015

Regletas de Cuisenaire. Versión digital.

Son muchos los vídeos , documentos teóricos y prácticos ("Trabajamos con las Regletas") que ilustran el interés y potencial didáctico de los "Números en color" de Cuisenaire, y relativamente numerosas las versiones digitales que se han hecho de las regletas.

He sido reticente durante años a realizar una versión digital de las regletas de Cuisenaire, sobre todo porque ya existían otras versiones. Curiosamente, todas las versiones que he encontrado, en las que las regletas se pueden desplazar, se basan en la representación plana de las mismas. No sé si esto se ha hecho así intencionadamente por parte de los desarrolladores, en atención a características psicológicas específicas de las edades de los alumnos a los que se destinan, o bien para eludir las dificultades técnicas añadidas que conlleva la representación tridimensional. Me temo que esto último ha tenido más peso en el diseño... Personalmente, yo sólo encuentro ventajas en la representación tridimensional de las regletas. Ésta ha sido una de las principales razones que me ha motivado a realizar esta aplicación, al constatar que existía espacio para la innovación y la mejora…

Me voy a centrar aquí exclusivamente en un análisis somero y crítico de estas versiones digitales desde el respeto y la consideración que merecen sus autores. Con el enfoque implementado en mi trabajo  “Evaluación de Contenidos Educativos Digitales Multimedia _ Matemáticas (CEDMMat)”, todas ellas pueden ser analizadas a la luz del modelo TPACK, es decir, desde el punto de vista de los diferentes grados de intersección o integración, logrados por los desarrolladores de estas versiones digitales, entre tecnología, didáctica-pedagogía y contenidos para asegurar una implementación exitosa de las TIC, entendiendo y aceptando que La tecnología optimiza (o puede optimizar) los procesos de enseñanza-aprendizaje con una compleja interconexión de tecnología, contenidos y pedagogía.

No descubro nada al afirmar que las regletas de Cuisenaire son un excelente material didáctico para la enseñanza-aprendizaje de las matemáticas, o al afirmar que se trata de un material polivalente. En el ámbito de las versiones digitales esto ha sido muy bien recogido en la aplicación “regletas”, de José Antonio Cuadrado. Se trata de una aplicación muy completa en este sentido. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo….

La mayoría de los desarrolladores ha optado por realizar versiones elementales que contemplan exclusivamente la manipulación libre permitiendo obtener y colocar copias en pantalla, una a una, de las diferentes regletas. Éstas pueden presentar dos orientaciones: horizontal y vertical. Generalmente se contempla la atracción o ajuste a una cuadrícula (visible o invisible) para facilitar la colocación y exactitud en la composición realizada. He aquí algunas aplicaciones con las características descritas, todas ellas muy parecidas entre sí:

  • La versión digital desarrollada por Ángel Martínez Recio (Universidad de Córdoba. España) tiene un diseño excesivamente elemental. La manipulación resulta poco atractiva al utilizar regletas muy pequeñas y muy pocas opciones de configuración. Resulta una aplicación pobre atendiendo a aspectos multimedia y a su interactividad.
  • Algo análogo se puede decir de "Regletas de Cuisenaire con Geogebra" realizada por José Manuel Infante. Ni tan siquiera permite clonar regletas. Y es que Geogebra es un muy buen software pero resulta muy limitado cuando se pretende utilizarlo como Flash...
  • La versión digital de NRICH enriching mathematics facilita el giro de las regletas pero hay que elegir siempre regleta antes de colocarla. Al igual que la anterior, no facilita el clonado de regletas del mismo valor y tiene muy pocas opciones de configuración.
  • http://www.escolovar.org/mat_numero_cuisenaire1.swf. Prácticamente igual a las anteriores.
  • NumBlox, de Math Toybox. Con respecto a las anteriores, añade la posibilidad de escribir en pantalla.
  • De la aplicación Mathbars, de MathPlaygroundhe tomado el modo de elegir el valor de la regleta.
  • En un nivel básico de diseño se encuentra también la versión para JClic  realizada por Miren GarraldaEs también muy limitado su potencial didáctico-pedagógico. Se centra en la asociación regleta color - número simbólico, ordenar de menor a mayor, sumar1, descomposiciones alternativas de números sencillos…Todo ello de manera cerrada sin posibilidad de que los niños manipulen con las regletas.
  • La versión de learningmath aporta modo libre y propone, además, algunos problemas. Facilita el clonado de regletas del mismo valor, por simple pulsación, y su colocación en la pantalla de trabajo. Representa un avance con respecto a las anteriores.

En otro nivel más avanzado de diseño nos encontramos con aplicaciones tales como:
  • El Proyecto Medusa ofrece “Los números que suman 10” y “Las sumas dobles”. La primera es bastante mejor desde el punto de vista del diseño multimedia que desde el punto de vista de su potencial didáctico-pedagógico. Considero que se ha realizado un gran esfuerzo para el tratamiento de un contenido muy específico y reducido a través de una propuesta excesivamente cerrada, dirigida y convergente, sin contemplar la manipulación libre….La segunda aplicación comparte características con la primera. Presenta regletas  tridimensionales pero sin la posibilidad de que el alumno realice acciones con ellas. Se utilizan para ilustrar la fase gráfica previa a la realización de actividades simbólicas (con números y signos) que son el verdadero objetivo de la aplicación.
  • Vedoque nos ofrece una versión digital de las regletas con una manipulación no demasiado ágil debido a que no facilita el clonado de piezas del mismo valor y porque las piezas, mientras se desplazan, se ajustan a la cuadrícula. Eso causa el efecto de un desplazamiento discontinuo. Además de la manipulación libre, ofrece 20 interesantes puzles planos. Las regletas nunca presentan el símbolo numérico correspondiente a su valor ni las divisiones en regletas unitarias (blancas), aunque sí se facilita el recuento de unidades de cada una de ellas.
  • Las muy conocidas regletas realizadas por  Gil Gijón Canal, David Cantos Vila y Maximina Fernández Orviz son una aplicación muy completa y elaborada. Muy equilibrada en sus aspectos téncicos y didáctico-pedagógicos. Como única pega, encuentro que, en modo jugar,  propone actividades de completar con valores numéricos que necesitan hacer uso del teclado, con lo que no se adaptan a la pizarra digital al requerir un teclado auxiliar. En este modo, la manipulación no resulta ágil debido a que no facilita el clonado de piezas del mismo valor.
  • Como ya indiqué anteriormente, las regletas de José Antonio Cuadrado son una aplicación muy completa. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Ha cuidado mucho las explicaciones, mediante vídeos. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo…

Encontramos, también, interpretaciones más libres de las regletas y otras aplicaciones derivadas:
  • La versión de la National Library of Virtual Manipulatives, Utah State University es más libre dado que no “respeta” la correspondencia color-longitud propia de las regletas Cuisenaire. Aunque contempla sólo la manipulación libre, permite clonar regletas numéricas de un determinado valor con mucha facilidad…
  • MultipleRepresentations utiliza la regleta unidad y la decena entre otros tipos de representaciones…
  • Fraction bars no utliza las regletas Cuisenaire pero sí “fraction bars” para trabajar las fracciones de una manera muy ágil y eficaz. Si la relaciono aquí es como pretexto para afirmar que aunque las regletas Cuisenaire sean muy polivalentes y permitan ilustrar numerosos conceptos, conviene utilizar, también, diferentes materiales para ilustrar-modelar un mismo concepto. Sería tremendamente aburrido, y poco creativo, utilizar las regletas para todas aquellas situaciones en que resultan adecuadas. 
........................................................................................................

He desarrollado la aplicación "Regletas de Cuisenaire" que ofrezco en este post teniendo en cuenta las virtudes y defectos, a mi juicio, de las anteriormente relacionadas. He pretendido en todo momento hacer rica la configuración de posibilidades en cada uno de sus modos de funcionamiento. He considerado prioritario enriquecer las posibilidades en el modo manipulación libre, favorecer el descubrimiento a través de una manipulación que resulte ágil y atractiva facilitando enormemente el clonado de regletas del mismo valor...

El cubo como unidad de diseño tridimensional ya lo había utilizado anteriormente en otras aplicaciones tales como ortoedroGeneración y codificación de policubos por capas,... La utilización del cubo unitario y de la regleta decena en bloques base 10 también son precedentes de esta aplicación. De análoga manera, he utilizado regletas (sin respetar los valores y colores de las de Cuisenaire) en varias aplicaciones que he realizado sobre fracciones.

Invito a los lectores a que descubran el potencial de esta aplicación y a que me hagan llegar las sugerencias que estimen oportunas.


15 noviembre, 2014

Resolución de PAEV en el CEIP. Serafina Andrades.

Agradezco a Teresa Simonet, directora del CEIP. Serafina Andrades, de Chiclana de la Frontera, el envío de estas imágenes. Ilustran una forma concreta, ideada por Fran Rodriguez, de abordar la resolución de PAEV (Problemas Aritméticos Escolares Verbalizados) siguiendo el metamodelo de resolución que pone el énfasis en hacer explícita la estructura del problema a dos niveles: el del PROCESAMIENTO LINGÜÍSTICO (que lleva a la expresión prealgebraica de la igualdad directriz del problema) y el del PROCESAMIENTO MATEMÁTICO (que traduce la anterior en forma de expresión algebraica que es la solución del problema). De esta manera se hacen especialmente patentes en el contexto de RP las interrelaciones entre competencias lingüísticas y matemáticas.

Se trata de un material que complementa a las aplicaciones TIC de DIDACTMATICPRIMARIA que inciden de manera interactiva sobre este modelo. 

Coincidiendo, según me dice Teresa, con una semana que no tuvieron conectividad a Internet, Fran Rodríguez se puso a implementar el modelo con etiquetas de texto recortables para sus alumnos/as de 5º. También lo van a llevar a cabo en 3º y 4º. 
Desde aquí, mis felicitaciones.

23 octubre, 2014

Aritmética mental básica. Problemitas y retos a partir de Educación Infantil.

Algunas de las aplicaciones que se ofrecen a continuación se incluían ya en Didáctica de la Suma y Resta. Formarán parte, a su vez, de un conjunto de aplicaciones para 2º ciclo de Educación Infantil y primer ciclo de Educación Primaria con las que se completará y mejorará Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI.

16 octubre, 2014

Bloques base 10. SND, suma y resta.

Hace ya casi un año que mi estimado colega Pepe Vidal  (de la Sociedad Canaria de Profesores de Matemáticas Isaac Newton) me manifestó que echaba en falta, entre todas mis aplicaciones, alguna dedicada a la suma/resta con bloques base 10...Y me animaba para que la desarrollara...

Tengo que confesar que sentía cierta pereza a hacerlo, previendo las dificultades, con el código de programación, con que me iba a encontrar. Bueno, por fin la he desarrollado y tengo que decir que me satisface el resultado final. 

Dado que en las escenas correspondientes a la suma y a la resta se ofrece un registro interactivo de los pasos realizados ( paso a paso o de manera simplificada) que no es sino un algoritmo natural y flexible para realizar la operación, puede que en un futuro la amplíe con la práctica de dichos algoritmos (ya en la fase puramente simbólica) puestos de manifiesto con la manipulación.

(Aplicación ampliada con fecha 29-10-2014)



(Ver a pantalla completa)

He decidido no incluir escenas dedicadas a la multiplicación y la división porque tendrían que reducirse forzosamente a casos muy concretos y sencillos (doble, triple,...división entre 2, 3, 4...) que no suponen una suficiente generalización,  obligando, además,  a reducir progresivamente el tamaño de los elementos móviles hasta hacerlo poco estético y operativo... Además, el hecho de que un mismo material sirva para ilustrar diferentes conceptos no significa que sea el más idóneo, ni el único, para ilustrar esos conceptos. Es conveniente ilustrar un mismo concepto con materiales diferentes. No obstante, a continuación ofrezco unos enlaces a vídeos en los que se ejemplifica el cálculo del doble, el reparto entre 3, etc...







En los siguientes vídeos ,y en otros de arriba, se afirma o se da por sentado que en la resta (por detracción, o por comparación) hay que comenzar a "quitar siempre por las unidades". Se trata de una afirmación general que es contraria a la didáctica de la aritmética mental basada en números en la que las operaciones se realizan de izquierda a derecha poniendo de manifiesto de manera más rápida y clara un valor aproximado de la solución. Así, por ejemplo, 435 - 248 = 235 - 48 (hemos quitado 2 centenas tanto al minuendo como al sustraendo y ya se aprecia que la solución va a ser un valor en torno a 200) = 205 - 18 (hemos quitado 3 decenas tanto al minuendo como al sustraendo) = 200 - 13 = 197 - 10 = 187. 

Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.




La siguiente presentación, de josealqueria, recoge perfectamente las estrategias de cálculo ligadas a la suma y resta.




Os invito a consultar  "Material didáctico analógico vs material didáctico digital" un post de este blog, de 2011.




27 septiembre, 2014

La noción de currículo y su significado en las matemáticas escolares, según Luis Rico.

Vídeos de IBERCIENCIA
Luis Rico Romero. Universidad de Granada
La noción de currículo y su significado en las matemáticas escolares. 

La noción de currículo y su significado en las matemáticas escolares. Funciones y estructura del currículo de matemáticas. Debate social y debate académico sobre la innovación y el cambio en el currículo de matemáticas. Finalidades en distintas etapas de la evolución de las matemáticas escolares. Cambios conceptuales y base cognitiva del conocimiento matemático. Matemáticas funcionales y alfabetización escolar. Diversidad de opciones y limitaciones en el trabajo con las evaluaciones terminales escolares: campo de estudio y desarrollo.





Luis Rico: Evaluación de la alfabetización matemática escolar


18 septiembre, 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)

17 septiembre, 2014

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!

19 agosto, 2014

DidácTICa de la suma y resta

No voy a hacer comentarios a esta ¿presentación interactiva? ¿libro interactivo?. Creo que es algo más que eso. De cualquier manera pueden juzgarlo los/as lectores/as. Agradeceré y publicaré cualquier comentario al respecto.

03 junio, 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)


01 mayo, 2014

Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI

Los centros educativos son algo dinámico, vivo, cambiante. En mi centro, en concreto, viene cambiando de un curso para otro aproximadamente un tercio del profesorado. De hecho, hemos visto necesaria en este curso escolar la revisión de las líneas metodológicas en matemáticas y, más en concreto, la necesidad de unificar criterios y materiales didácticos en relación con la resolución de problemas (que ya se había manifestado en la memoria final del curso pasado).

Movido por esta necesidad y como consecuencia de las acciones planificadas para lograr mayor coordinación, he organizado de manera interactiva, y siguiendo mis propios criterios, un buen número de aplicaciones que se ofrecen en este blog ( mejorándolas y añadiendo otras nuevas) y que inciden sobre la RESOLUCIÓN DE PROBLEMAS ARITMÉTICOS ESCOLARES. El resultado es un taller bastante amplio y rico que se instalará en todos los ordenadores del centro para poder ser utilizado offline.

Este taller es coherente con las líneas metodológicas para el ÁREA DE MATEMÁTICAS consensuadas en nuestro PLAN DE CENTRO, a la vez que las ejemplifica, materializa y concreta en forma de actividades interactivas para la Etapa Primaria (en lo que a RP aritméticos se refiere). Las 32 aplicaciones TIC que lo configuran abordan de manera NO RUTINARIA e INNOVADORA la resolución de problemas aritméticos  proporcionando una experiencia amplia, rica, atractiva y curricularmente relevante de lo que es 'resolver problemas' haciendo uso de los ordenadores del centro y de las PDIs.




(Ver a pantalla completa)
(Taller presentado por primera vez en público en el CEIP. Serafina Andrades, de Chiclana de la Frontera (Cádiz) // Mayo-2014)

No son simples baterías de problemas al uso propuestas a los/as alumnos/as para constatar si saben, o no, resolver determinados problemas. Se han diseñado con un sólida fundamentación didáctica pensando tanto en los docentes como en los/as alumnos/as, para incidir en los procesos claves de la enseñanza-aprendizaje de la RP, proporcionando a los/as alumnos/as el andamiaje necesario para la realización de los retos propuestos.

La riqueza y diversidad de METAMODELOS y MODELOS  procedimentales inciden de manera especial en el análisis/síntesis de la información, el establecimiento de relaciones entre las partes y el todo, la explicitación de la ESTRUCTURA del problema tanto a NIVEL LINGÜÍSTICO (prealgebraico) como a NIVEL ALGEBRAICO (operaciones combinadas), el reconocimiento de situciones problemáticas CONVERGENTES Y DIVERGENTES, el desarrollo del SIGNIFICADO OPERACIONAL, ... 

Este Taller pone de manifiesto que más que la búsqueda de un procedimiento o método que sirva para la resolución de cualquier problema aritmético se persigue y apuesta por la riqueza de procedimientos en la RP. En este sentido, se ha tenido en cuenta la teoría expuesta por José A. Fernández Bravo en METAMODELOS Y MODELOS DE SITUACIONES PROBLEMÁTICAS sobre metamodelos procedimentales en problemas verbalizados con enunciado y pregunta, sobre todo modelos de ESTRUCTURACIÓN Y GENERATIVOS. No obstante, también se tratan problemas no verbales (sin enunciado) y mixtos (con enunciado incompleto o desectructurado)...

Por otra parte, se enriquece la teoría de Fernández Bravo con la incorporación de novedosos metamodelos TIC y la interactividad que permiten ('simulación', 'modelización', 'análisis y síntesis mediante cartulinas multiproblema', 'resolución asistida', etc...). 

Se ha pretendido en todo momento que los problemas o retos propuestos resulten atractivos para los/as alumnos/as. Por lo general se presentan contextualizados con escenas gráficas en las que intervienen niños y niñas en situaciones más o menos cotidianas.

No existe en la red ( o en la nube si se prefiere) algo similar.


Aunque las aplicaciones son muy artesanales, están bastante experimentadas y  muy bien cuidadas en sus aspectos esenciales (interactividad, estadísticas, información al profesorado del interés didáctico,...), la propuesta - como todo lo que ofrezco en mi blog- es susceptible de mejora, ampliación y cambios. Todas las aplicaciones incluidas en este taller (algunas de ellas son, a su vez, macroaplicaciones) están perfectamente adaptadas para su uso con PDI.





09 abril, 2014

La competencia matemática en educación primaria: algunas estrategias para ayudar a los maestros a integrar la adquisición de estrategias...

Resulta grato toparse con trabajos como éste. Se trata de una TRABAJO FIN DE GRADO realizado en 2012-2013 para la titulación en Grado de Educación Primaria  cuyo autor es Diego Matés Potes y cuya directora es Luz Roncal Gómez. Ha sido publicado por la Universidad de la Rioja bajo licencia Creative Commons (BY-NC-ND).

Y resulta grato porque permite constatar una formación inicial para futuros maestros/as, en el área de matemáticas, bien fundamentada y bien dirigida (La adquisición de competencias matemáticas a través de la Resolución de Problemas). 

(Dado que la versión de este documento en Calaméo no tiene activos los hipervínculos, os ofrezco este documento en versión .pdf con los vínculos activos)

Me resulta, además, especialmente satisfactorio constatar que mis propuestas sobre la Resolución de Problemas van calando en diferentes Facultades de Educación...y que otros docentes reconozcan que mis trabajos son relevantes y pioneros dentro de la Didáctica de las Matemáticas en Primaria:



¡Gracias, Mariángeles! (De vez en cuando uno necesita alimentar su ego para seguir con esta ardua y desinteresada tarea de ofrecer lo mejor de su conocimiento profesional docente...)


03 abril, 2014

Niño resolviendo problemas propuestos en "PESA_PENSANDO_I" semidirigido por su mamá.

He encontrado en Youtube estos vídeos subidos por Luisa de Lama que ilustran el aprovechamiento fuera de la escuela de la aplicación "PESA PENSANDO I" ( incluida en "ProblemáTICas Primaria"). Una mamá supervisa y guía a su hijo mientras realiza, uno por uno, los 20 problemas propuestos en el apartado "balanzas fijas" de la aplicación aludida. 

Me ha alegrado mucho encontrarlo puesto que yo suelo limitarme a desarrollar contenidos educativos multimedia interactivos - lo que ocupa todo mi tiempo disponible-, que nacen desde la escuela y para la escuela, pero no suelo ilustrar su uso, mediante vídeos, con alumnos y alumnas... En este caso Luisa de Lama lo ha hecho por mí. Se pone de manifiesto el valor añadido de los contenidos educativos multimedia bien diseñados y atractivos, tanto para el trabajo individual como colectivo, bien sea dirigido, semidirigido o autónomo; tanto en el aula como en otras situaciones de enseñanza-aprendizaje...

Se trata de una aplicación fuertemente visual en la que el equilibrio de la/s balanza/s es fácilmente interpretado como una igualdad y que favorece enormemente la captación y expresión de las relaciones numéricas... Las balanzas implementan, con dificultad gradual, ecuaciones de primer grado y sistemas de dos ecuaciones con dos incógnitas que están al alcance de niños y niñas de 2º y 3º ciclo de Educación Primaria. Con los alumnos y alumnas de 3º ciclo pueden ser utilizadas de manera prealgebraica como se ilustra en "Álgebra y resolución de ecuaciones en Primaria_1".

Como se puede comprobar, cada problema propuesto es un soporte ideal para que el niño verbalice tanto las relaciones numéricas como el razonamiento lógico que lleva a la solución. Viene bien como continuación de los últimos post de este blog dedicados a la resolución de PAEV ya que, al fin y al cabo, es otro modelo_TIC de resolución de PAEV.

Aunque yo concebí la aplicación como soporte, también, de estrategias para el cálculo mental, vemos que no pierde virtualidad si se recurre a cálculos con lápiz y papel. (Ver también "Pesa_pensando II" y "Balanzas fijas equilibradas")








26 marzo, 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_III. Del enunciado a la expresión algebraica solución del problema.

En un post que escribí hace ya más de dos años (En busca del significado. Operaciones combinadas en Primaria. ¿Por qué? ¿Para qué?) ilustraba con numerosos ejemplos que la práctica totalidad de las aplicaciones_TIC que tratan las operaciones combinadas lo hacen de una manera descontextualizada ( al margen de la resolución de problemas) y con un enfoque convergente, meramente instructivo (la expresión algebraica es algo dado al alumno, ajena a él; se busca la interpretación correcta única, la correcta decodificación basada en el uso de convenios relacionados con la jerarquía de las operaciones…).

 

Las operaciones combinadas se presentan, efectivamente, como algo dado a los alumnos para que éstos las interpreten pero no como producción o construcción de los propios alumnos haciendo uso del lenguaje matemático en el contexto de resolución de problemas. Si bien la correcta interpretación (decodificación) es necesaria, no es suficiente para desarrollar niveles superiores de competencia matemática relacionada con el dominio progresivo y contextualizado del lenguaje simbólico..



Si además tenemos en cuenta que las soluciones numéricas, en nuestra sociedad tecnológicamente avanzada, son casi exclusivamente dadas como expresiones alfanuméricas (operaciones combinadas) que los procesadores matemáticos de calculadoras, computadoras y otros muchos dispositivos electrónicos resuelven numéricamente, se hace más patente la necesidad de un nuevo enfoque en la didáctica de las operaciones combinadas (que no parecen sostenerse como un tópico matemático aislado e independiente de otros…)

 

Por otra parte, he comentado en diferentes artículos de mi blog que desarrollar aplicaciones TIC sobre resolución de problemas consistentes en baterías de problemas con comprobación de la solución (entendida como un número) no supone un gran avance con respecto a una batería de problemas propuestos en material impreso (o en algún formato digital equivalente). Las aplicaciones TIC sobre resolución de problemas deben ir más allá, buscando incidir interactivamente en el meollo del proceso de resolución…



El modelo de resolución de PAEV que propone esta nueva aplicación pone el énfasis en la producción, por parte de los alumnos y alumnas, de expresiones algebraicas (operaciones indicadas) que pueden considerarse ya soluciones del problema. No obstante, la aplicación, para cada problema diferente, evalúa tanto la expresión algebraica producida como el número dado como solución... Evidentemente la aplicación implementa un nivel deseable para alumnos del tercer ciclo de la Etapa Primaria. Además, aunque no se expliciten las relaciones entre magnitudes (análisis y síntesis) éstas han de realizarse ineludiblemente para poder resolver correctamente el problema propuesto. Es por ello que se recomienda que antes se hayan trabajado otras aplicaciones que pongan de manifiesto el análisis síntesis en la resolución de PAEV, como las que se tratan en post anteriores a éste en este mismo blog.

 

Basta experimentar con la aplicación para darse cuenta de que el paso o traducción de las relaciones implícitas en el enunciado del problema a su expresión algebraica no es precisamente un proceso convergente. Muy al contrario, se trata por lo general de un proceso divergente y, por tanto, creativo Para ilustrar esta afirmación podemos analizar un ejemplo:



Las siguientes expresiones algebraicas, entre otras, serían respuestas válidas atendiendo a las restricciones que impone la aplicación (la expresión algebraica sólo puede utilizar datos presentes en el enunciado, es decir, no puede contener números que sean resultado de un cálculo previo con datos; un determinado dato, por lo general, aparece una sola vez en la expresión,… ):
1.-  ((49 x 10) : 280) : 7
2.-  ((10 x 49) : 280) : 7
3.-  ((49 x 10) : 7) : 280
4.-  ((10 x 49) : 7) : 280
5.-  (49 x 10) : 280 : 7
6.-  49 x 10 : 280 : 7
7.-  49 x 10 : 7: 280
8.-  (49 x 10 : 280) : 7
9.-  (49 x 10 : 7): 280
10.- 49 x (( 10 : 7): 280)
11.- 49 x (( 10 : 280): 7)
Lo primero que salta a la vista es que podemos hacer uso exclusivamente de paréntesis estrictamente necesarios o bien utilizar también paréntesis “personales” que sirven para reforzar la consideración de una determinada cantidad de una magnitud creada durante la fase de análisis/síntesis que no aparece de forma explícita en el enunciado del problema o bien para dar cuenta de la estrategia seguida para llegar a la solución…

Mientras que en 1, por ejemplo, se ha calculado primero el arroz total que corresponde a cada persona durante una semana, en 3 se ha calculado primero el arroz total que corresponde a todo el campamento en un día… Personalmente, encuentro que las expresiones 1 y 3 son más significativas que sus correspondientes 6 y 7, respectivamente. Y esto es, precisamente, porque hacen uso de paréntesis que aún no siendo estrictamente necesarios sí que aportan significado.

Es precisamente la economía de paréntesis la que puede dar problemas y la que da origen a convenios en la realización de determinadas secuencias de cálculo, como se ilustra en la imagen. La aplicación da por válida la expresión 49 x 10 : 280 : 7. Sin embargo puede que el alumno no realice correctamente la secuencia de cálculos. Es por ello que la aplicación también comprueba el valor numérico de la expresión algebraica.

Desde un punto de vista técnico, contemplar la divergencia en las respuestas correctas dificulta considerablemente el código y diseño de la aplicación… Pero merece la pena una aplicación así ya que favorece especialmente que el problema sea captado de manera global haciendo más patente la estructura del problema.

Los problemas que se proponen en esta aplicación manejan datos numéricos realistas y coherentes con las situaciones problemáticas presentadas. Se pretende, además, que los alumnos realicen los cálculos en línea, no en columnas, sobre la propia expresión algebraica. Para ello, se ha habilitado una zona de escritura “a mano”, que puede utilizarse tanto para ensayar la expresión algebraica solución como para realizar los cálculos.

Cuando se utiliza en clase, con la PDI, es necesario que los niños y niñas realicen el análisis/síntesis del problema y justifiquen oralmente el proceso de resolución seguido. 

Una aplicación que complementa perfectamente a ésta es "ASOCIA":