Mostrando entradas con la etiqueta Metamodelos TICs de RP. Mostrar todas las entradas
Mostrando entradas con la etiqueta Metamodelos TICs de RP. Mostrar todas las entradas

17 noviembre, 2016

La original respuesta de Jiaqi Lin (operaciones combinadas en la resolución de PAEV)

Jiaqi Lin (5º) mostrando orgullosa su sobresaliente (10) en el control


Frente a modelos de resolución de PAEV (Problemas Aritméticos de Enunciado Verbal) que ponen el énfasis en la forma de realizar los cálculos, vengo defendiendo un nuevo  modelo de   resolución   centrado   en   el   razonamiento lingüístico-matemático.  Se  trata  de  un  modelo  significativo,  avanzado  y  bien  fundamentado  didácticamente  en  tanto  en  cuanto pone el énfasis en la expresión de la estrategia de resolución íntimamente ligada a la estructura del problema. Ello implica necesariamente diferir la  realización  de los cálculos. Además de ser un modelo más significativo y "más experto", previene la mayoría de los errores que tradicionalmente vienen cometiendo los/as alumnos/as en la resolución de PAEV porque ven números que saben que tienen que operar con otros números y no significados y estructuras... Exige  mayor estructuración   de   la información   y   consiste   fundamentalmente   en   la   explicitación  prealgebraica  y  algebraica  de  la  estructura  del  problema  como  requisito previo a la realización de cálculos. 


En diferentes post de este blog he tratado sobre mi método de "Resolución de PAEV mediante el modelado algebraico con etiquetas de texto". Una justificación del mismo se realiza en este documento (en .pdf)



Las imágenes corresponden a un control escrito sobre resolución de problemas de varias operaciones, en 5º del presente curso, haciendo uso exclusivo de la expresión algebraica (operaciones combinadas en una sola línea) como expresión de la estrategia y, a la par, como solución indicada de los problemas propuestos.

En este caso los/as alumnos/as no pueden realizar ningún cálculo y, por tanto, sólo pueden aparecer en las expresiones algebraicas datos proporcionados en el problema...

Quiero aquí llamar la atención sobre la original respuesta de Jiaqi Lin a la pregunta "¿Cuánto dinero del recaudado les quedó a los gerentes del teatro después de pagar a los actores?"

La original respuesta de Jiaqi

No se ha repetido esta solución en ninguno de los otros 47 alumnos/as de 5º que realizó la prueba. La respuesta dada por los/as demás alumnos/as que han acertado esta pregunta ha sido [(225 x12)+(125x6)]-(350x5),  o bien ligeras variantes de la anterior : [(225 x12)+(125x6)]-[(225x5)+(125x5)] [(225 x12)+(125x6)]-[(225 + 125)x5],...

Ni que decir tiene que los/as alumnos/as deben saber calcular el valor numérico de estas expresiones algebraicas. Pero quiero dejar claro que eso es secundario frente a la identificación y expresión de la estructura o columna vertebral del problema. Lo realmente importante para llegar a ser un resolutor experto es encontrar la expresión algebraica. Cualquier programador, por poner un ejemplo, daría las instrucciones de una manera similar para que el ordenador realizara los cálculos... Pero si digo que los cálculos son secundarios es porque generalmente se insiste muy poco en los significados de las expresiones algebraicas. Éstas, por lo general, no tienen su origen ni se relacionan con la resolución de problemas sino que aparecen como algo aparte y descontextualizado que es dado a los/as alumnos/as para ser resuelto siguiendo un conjunto de reglas. Para mis alumnos/as cada paréntesis o corchete encierra una magnitud diferente que hay que saber identificar y describir, y no nos importa escribir más paréntesis de los estrictamente necesarios:

(12-5): Cantidad de dinero que queda como beneficio a los gerentes del teatro por cada entrada de adulto tras haber pagado a los actores.

((12-5) x 225): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas de adulto tras haber pagado a los actores.

(6-5): Cantidad de dinero que queda como beneficio a los gerentes del teatro por cada entrada de niño tras haber pagado a los actores.

((6-5) x 125): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas de niño tras haber pagado a los actores.

((12-5) x 225)+((6-5) x 125): Cantidad de dinero que queda como beneficio a los gerentes del teatro por todas las entradas  tras haber pagado a los actores.

Lo anterior está directamente relacionado con los siguientes indicadores (Currículo de Matemáticas-Primaria-Andalucía):
Indicadores:
MAT.3.1.1. En un contexto de resolución de problemas sencillos, anticipa una solución razonable y busca los procedimientos matemáticos adecuados para abordar el proceso de resolución. (CMCT, CCL, CAA). 
MAT.3.1.2. Valora las diferentes estrategias y persevera en la búsqueda de datos y soluciones precisastanto en la formulación como en la resolución de un problema. (CMCT, CAA, SIEP). 
MAT.3.1.3. Expresa de forma ordenada y clara, oralmente y por escrito, el proceso seguido en la resolución de problemas. (CMCT, CCL).
Además del modelado algebraico mediante etiquetas de texto, utilizamos otros modelos. He aquí algunas aplicaciones para segundo y tercer ciclo de Primaria que he diseñado y utilizo para el fin anteriormente descrito: 

A.- Un modelo de resolución asistida.
Completa y calcula

B.- Un modelo de asociación.
Asocia cada problema con su operación indicada


 C.- Un modelo de expresión/construcción.
Resolución de PAEV. Del enunciado a la expresión algebraica.´

La siguiente "macroaplicación" contiene a las anteriores así como otras dos dedicadas específicamente al cálculo de operaciones combinadas. Se propone como una secuencia internivelar que recoge las consideraciones metodológicas y didácticas referidas anteriormente:

Operaciones combinadas. Secuencia internivelar


 

15 noviembre, 2015

Modelos TICs de Resolución de Problemas de Matemáticas en el VI Encuentro Provincial del profesorado de Matemáticas. Sevilla.

Cartel del VI Encuentro.

La Universidad Pablo de Olavide acogió los días 11, 12 y 13 de noviembre del 2015 el VI Encuentro Provincial del Profesorado de Matemáticas de Sevilla, cuyo lema es "Matemáticas con arte".

La conferencia inaugural del encuentro, a cargo de D. Ángel Requena Fraile se dedicó al Turismo matemático como recurso didáctico. Tengo que reconocer que era como escuchar a un sabio. ¡Genial! El título coincide con el de un blog suyo desde el que se pueden descargar las interesantísimas diapositivas de su presentación, aunque no son nada comparadas con sus comentarios. En el blog, en cambio, aparecen comentadas.

"El arte con matemáticas es, si cabe, más bello.  Las matemáticas no son sólo una ciencia útil para la vida material o una aventura del pensamiento, también son un instrumento para el goce..."

Por mi parte, durante los días 11 y 12 colaboré en el VI Encuentro impartiendo el taller MODELOS TICs DE RESOLUCIÓN DE PROBLEMAS. Aunque el texto completo del taller no es un formato adecuado para transmitir el contenido de un taller eminentemente interactivo y no supone sino un conjunto de brochazos gruesos para tratar de describir gráficamente esta temática, lo ofrezco aquí para quien pudiera estar interesado:

Acceso a los textos completos de los TALLERES.
Acceso a los textos completos de la COMUNICACIONES.

08 noviembre, 2015

20 problemas aditivos de cambio. Animados. Para 1º de Primaria.




20 problemas animados de cambio aditivo. Didactmaticprimaria.net




No cabe duda de que las TICs pueden ofrecer nuevos escenarios (en la RESOLUCIÓN DE PROBLEMAS) con nuevas posibilidades (corrección - autorregulación del proceso-, interactividad, simulación, experimentación, mayor  riqueza en los lenguajes de presentación, mayor variedad y control en las fases intermedias de resolución, mayor variedad en la forma de resolver un problema, etc...). Y no cabe duda de que Didactmaticprimaria ha profundizado de manera pionera en estos aspectos.
                
Esta aplicación presenta un modelo TIC de resolución no rutinaria de elementales problemas aditivos de CAMBIO que puede englobarse, a su vez, dentro del metamodelo de ESTRUCTURACIÓN.
                
En los problemas de cambio se parte de un conjunto inicial de elementos a los que se agrega o quita una cantidad de elementos de la misma naturaleza. De esta manera, las partes constituyentes del problema son la SITUACIÓN INICIAL, EL CAMBIO PRODUCIDO Y LA SITUACIÓN FINAL. La manera más rutinaria y frecuente de presentarlos es de forma verbalizada, fundamentalmente escrita (con frecuencia ilustrados con una imagen estática), dando dos cualesquiera de estas partes y preguntando por la tercera.
               
En esta aplicación, gracias a las TICs, SE REDUCE LA ABSTRACCIÓN haciendo hincapié en la visualización del cambio (y de las situaciones inicial y final) permitiendo pasar de manera gráfica y dinámica de la situación inicial a la final, y viceversa. De esta manera, además de hacer más atractivo el problema, se hace más patente la reversibilidad que caracteriza a cualquier problema aditivo de cambio: si de la situación inicial se pasa a la final aumentando, de la situación final se pasará a la inicial disminuyendo la misma cantidad, y viceversa. La reversibilidad del pensamiento puesto en juego en la resolución de estos problemas facilitará la reinterpretación de un problema de suma en otro de resta, y viceversa. Ser hace así más patente que suma y resta son la misma estructura aditiva.
                
No se facilitan a los/as alumnos/as  los datos de manera explícita ni se formula pregunta alguna. Resolver el problema aquí es completar con números un texto sencillo que se aproxima a un argumento lógico que relaciona la situación inicial, la final y el cambio producido. Por lo general bastará interpretar correctamente la situación y contar los elementos gráficos para determinar cuantitativamente situación inicial, cambio y situación final. Pero no siempre esto es posible para alumnos/as  de estas edades (primero de Primaria, como referencia) dado que el cambio es dinámico, diferentes elementos se mueven a la par y esto dificulta su recuento...En estos casos el cambio puede considerarse como  desconocido y tendrá que deducirse de la situación inicial y final. 
                               
Los/as alumnos/as pueden completar los tres datos numéricos correspondientes a los tres elementos del problema en el orden que deseen. El texto a completar  no  siempre  se  ajusta  a la secuencia temporal implícita o explícita en la situación. Esto se ha diseñado intencionadamente así para obligar al alumno a que reformule mentalmente la situación a partir de la correcta comprensión de los tres elementos del problema. Para facilitar la resolución, el botón <VER> se puede pulsar tantas veces como se desee para alternar situación inicial /situación final y visualizar el cambio tantas veces como se desee

Este modelo también se encuentra en la aplicación "Elefantes". Para este nivel (1º de Primaria) y en relación con los problemas de COMPARACIÓN (algo más difíciles) recomiendo la muy atractiva aplicación "Granja (1 y 2)", entre otras.




10 agosto, 2015

Elefantes. Para 1º de Educación Primaria.


(Ver a pantalla completa)


Una aplicación que interrelaciona la estadística elemental (recuento y registro en forma de tabla) con la suma y resta (complemento al 10, 20, 30, 40 y 50) y con sencillos problemas aditivos de cambio

Además de los retos propuestos, la aplicación tiene mayor potencial didáctico, pues se puede pedir a los/as alumnos/as que interpreten los datos de cada fila y columna.

15 noviembre, 2014

Resolución de PAEV en el CEIP. Serafina Andrades.

Agradezco a Teresa Simonet, directora del CEIP. Serafina Andrades, de Chiclana de la Frontera, el envío de estas imágenes. Ilustran una forma concreta, ideada por Fran Rodriguez, de abordar la resolución de PAEV (Problemas Aritméticos Escolares Verbalizados) siguiendo el metamodelo de resolución que pone el énfasis en hacer explícita la estructura del problema a dos niveles: el del PROCESAMIENTO LINGÜÍSTICO (que lleva a la expresión prealgebraica de la igualdad directriz del problema) y el del PROCESAMIENTO MATEMÁTICO (que traduce la anterior en forma de expresión algebraica que es la solución del problema). De esta manera se hacen especialmente patentes en el contexto de RP las interrelaciones entre competencias lingüísticas y matemáticas.

Se trata de un material que complementa a las aplicaciones TIC de DIDACTMATICPRIMARIA que inciden de manera interactiva sobre este modelo. 

Coincidiendo, según me dice Teresa, con una semana que no tuvieron conectividad a Internet, Fran Rodríguez se puso a implementar el modelo con etiquetas de texto recortables para sus alumnos/as de 5º. También lo van a llevar a cabo en 3º y 4º. 
Desde aquí, mis felicitaciones.

23 octubre, 2014

Aritmética mental básica. Problemitas y retos a partir de Educación Infantil.

Algunas de las aplicaciones que se ofrecen a continuación se incluían ya en Didáctica de la Suma y Resta. Formarán parte, a su vez, de un conjunto de aplicaciones para 2º ciclo de Educación Infantil y primer ciclo de Educación Primaria con las que se completará y mejorará Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI.

19 agosto, 2014

DidácTICa de la suma y resta

No voy a hacer comentarios a esta ¿presentación interactiva? ¿libro interactivo?. Creo que es algo más que eso. De cualquier manera pueden juzgarlo los/as lectores/as. Agradeceré y publicaré cualquier comentario al respecto.


Esta macroaplicación, realizada en Flash, presenta fallos de compatibilidad al ser presentada actualmente mediante Ruffle. Dado que son tantas las aplicaciones diferentes que se enlazan en ella y dado que actualmente las mismas están perfectamente adaptadas, mejoradas e  integradas en otras aplicaciones dentro del proyecto MATE.TIC.TAC, he decidido que no merece la pena gastar esfuerzos en actualizarla. De cualquier manera, puede dar una buena idea de lo que publiqué en su momento.
                                                    (Juan García Moreno, marzo-2022)

Para compensar esto, ofrezco a continuación otra macroaplicación sobre  LA RESTA "QUITANDO" Y "COMPLETANDO".

03 junio, 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)


01 mayo, 2014

Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI

Los centros educativos son algo dinámico, vivo, cambiante. En mi centro, en concreto, viene cambiando de un curso para otro aproximadamente un tercio del profesorado. De hecho, hemos visto necesaria en este curso escolar la revisión de las líneas metodológicas en matemáticas y, más en concreto, la necesidad de unificar criterios y materiales didácticos en relación con la resolución de problemas (que ya se había manifestado en la memoria final del curso pasado).

Movido por esta necesidad y como consecuencia de las acciones planificadas para lograr mayor coordinación, he organizado de manera interactiva, y siguiendo mis propios criterios, un buen número de aplicaciones que se ofrecen en este blog ( mejorándolas y añadiendo otras nuevas) y que inciden sobre la RESOLUCIÓN DE PROBLEMAS ARITMÉTICOS ESCOLARES. El resultado es un taller bastante amplio y rico que se instalará en todos los ordenadores del centro para poder ser utilizado offline.

Este taller es coherente con las líneas metodológicas para el ÁREA DE MATEMÁTICAS consensuadas en nuestro PLAN DE CENTRO, a la vez que las ejemplifica, materializa y concreta en forma de actividades interactivas para la Etapa Primaria (en lo que a RP aritméticos se refiere). Las 32 aplicaciones TIC que lo configuran abordan de manera NO RUTINARIA e INNOVADORA la resolución de problemas aritméticos  proporcionando una experiencia amplia, rica, atractiva y curricularmente relevante de lo que es 'resolver problemas' haciendo uso de los ordenadores del centro y de las PDIs.





(Taller presentado por primera vez en público en el CEIP. Serafina Andrades, de Chiclana de la Frontera (Cádiz) // Mayo-2014)

(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

No son simples baterías de problemas al uso propuestas a los/as alumnos/as para constatar si saben, o no, resolver determinados problemas. Se han diseñado con un sólida fundamentación didáctica pensando tanto en los docentes como en los/as alumnos/as, para incidir en los procesos claves de la enseñanza-aprendizaje de la RP, proporcionando a los/as alumnos/as el andamiaje necesario para la realización de los retos propuestos.

La riqueza y diversidad de METAMODELOS y MODELOS  procedimentales inciden de manera especial en el análisis/síntesis de la información, el establecimiento de relaciones entre las partes y el todo, la explicitación de la ESTRUCTURA del problema tanto a NIVEL LINGÜÍSTICO (prealgebraico) como a NIVEL ALGEBRAICO (operaciones combinadas), el reconocimiento de situciones problemáticas CONVERGENTES Y DIVERGENTES, el desarrollo del SIGNIFICADO OPERACIONAL, ... 

Este Taller pone de manifiesto que más que la búsqueda de un procedimiento o método que sirva para la resolución de cualquier problema aritmético se persigue y apuesta por la riqueza de procedimientos en la RP. En este sentido, se ha tenido en cuenta la teoría expuesta por José A. Fernández Bravo en METAMODELOS Y MODELOS DE SITUACIONES PROBLEMÁTICAS sobre metamodelos procedimentales en problemas verbalizados con enunciado y pregunta, sobre todo modelos de ESTRUCTURACIÓN Y GENERATIVOS. No obstante, también se tratan problemas no verbales (sin enunciado) y mixtos (con enunciado incompleto o desectructurado)...

Por otra parte, se enriquece la teoría de Fernández Bravo con la incorporación de novedosos metamodelos TIC y la interactividad que permiten ('simulación', 'modelización', 'análisis y síntesis mediante cartulinas multiproblema', 'resolución asistida', etc...). 

Se ha pretendido en todo momento que los problemas o retos propuestos resulten atractivos para los/as alumnos/as. Por lo general se presentan contextualizados con escenas gráficas en las que intervienen niños y niñas en situaciones más o menos cotidianas.

No existe en la red ( o en la nube si se prefiere) algo similar.


Aunque las aplicaciones son muy artesanales, están bastante experimentadas y  muy bien cuidadas en sus aspectos esenciales (interactividad, estadísticas, información al profesorado del interés didáctico,...), la propuesta - como todo lo que ofrezco en mi blog- es susceptible de mejora, ampliación y cambios. Todas las aplicaciones incluidas en este taller (algunas de ellas son, a su vez, macroaplicaciones) están perfectamente adaptadas para su uso con PDI.





09 abril, 2014

La competencia matemática en educación primaria: algunas estrategias para ayudar a los maestros a integrar la adquisición de estrategias...

Resulta grato toparse con trabajos como éste. Se trata de una TRABAJO FIN DE GRADO realizado en 2012-2013 para la titulación en Grado de Educación Primaria  cuyo autor es Diego Matés Potes y cuya directora es Luz Roncal Gómez. Ha sido publicado por la Universidad de la Rioja bajo licencia Creative Commons (BY-NC-ND).

Y resulta grato porque permite constatar una formación inicial para futuros maestros/as, en el área de matemáticas, bien fundamentada y bien dirigida (La adquisición de competencias matemáticas a través de la Resolución de Problemas). 

(Dado que la versión de este documento en Calaméo no tiene activos los hipervínculos, os ofrezco este documento en versión .pdf con los vínculos activos)

Me resulta, además, especialmente satisfactorio constatar que mis propuestas sobre la Resolución de Problemas van calando en diferentes Facultades de Educación...y que otros docentes reconozcan que mis trabajos son relevantes y pioneros dentro de la Didáctica de las Matemáticas en Primaria:



¡Gracias, Mariángeles! (De vez en cuando uno necesita alimentar su ego para seguir con esta ardua y desinteresada tarea de ofrecer lo mejor de su conocimiento profesional docente...)


03 abril, 2014

Niño resolviendo problemas propuestos en "PESA_PENSANDO_I" semidirigido por su mamá.

He encontrado en Youtube estos vídeos subidos por Luisa de Lama que ilustran el aprovechamiento fuera de la escuela de la aplicación "PESA PENSANDO I" ( incluida en "ProblemáTICas Primaria"). Una mamá supervisa y guía a su hijo mientras realiza, uno por uno, los 20 problemas propuestos en el apartado "balanzas fijas" de la aplicación aludida. 

Me ha alegrado mucho encontrarlo puesto que yo suelo limitarme a desarrollar contenidos educativos multimedia interactivos - lo que ocupa todo mi tiempo disponible-, que nacen desde la escuela y para la escuela, pero no suelo ilustrar su uso, mediante vídeos, con alumnos y alumnas... En este caso Luisa de Lama lo ha hecho por mí. Se pone de manifiesto el valor añadido de los contenidos educativos multimedia bien diseñados y atractivos, tanto para el trabajo individual como colectivo, bien sea dirigido, semidirigido o autónomo; tanto en el aula como en otras situaciones de enseñanza-aprendizaje...

Se trata de una aplicación fuertemente visual en la que el equilibrio de la/s balanza/s es fácilmente interpretado como una igualdad y que favorece enormemente la captación y expresión de las relaciones numéricas... Las balanzas implementan, con dificultad gradual, ecuaciones de primer grado y sistemas de dos ecuaciones con dos incógnitas que están al alcance de niños y niñas de 2º y 3º ciclo de Educación Primaria. Con los alumnos y alumnas de 3º ciclo pueden ser utilizadas de manera prealgebraica como se ilustra en "Álgebra y resolución de ecuaciones en Primaria_1".

Como se puede comprobar, cada problema propuesto es un soporte ideal para que el niño verbalice tanto las relaciones numéricas como el razonamiento lógico que lleva a la solución. Viene bien como continuación de los últimos post de este blog dedicados a la resolución de PAEV ya que, al fin y al cabo, es otro modelo_TIC de resolución de PAEV.

Aunque yo concebí la aplicación como soporte, también, de estrategias para el cálculo mental, vemos que no pierde virtualidad si se recurre a cálculos con lápiz y papel. (Ver también "Pesa_pensando II" y "Balanzas fijas equilibradas")








26 marzo, 2014

Análisis y síntesis en la resolución de Problemas Aritméticos de Enunciado Verbal (PAEV)_III. Del enunciado a la expresión algebraica solución del problema.

En un post que escribí hace ya más de dos años (En busca del significado. Operaciones combinadas en Primaria. ¿Por qué? ¿Para qué?) ilustraba con numerosos ejemplos que la práctica totalidad de las aplicaciones_TIC que tratan las operaciones combinadas lo hacen de una manera descontextualizada ( al margen de la resolución de problemas) y con un enfoque convergente, meramente instructivo (la expresión algebraica es algo dado al alumno, ajena a él; se busca la interpretación correcta única, la correcta decodificación basada en el uso de convenios relacionados con la jerarquía de las operaciones…).

 

Las operaciones combinadas se presentan, efectivamente, como algo dado a los alumnos para que éstos las interpreten pero no como producción o construcción de los propios alumnos haciendo uso del lenguaje matemático en el contexto de resolución de problemas. Si bien la correcta interpretación (decodificación) es necesaria, no es suficiente para desarrollar niveles superiores de competencia matemática relacionada con el dominio progresivo y contextualizado del lenguaje simbólico..



Si además tenemos en cuenta que las soluciones numéricas, en nuestra sociedad tecnológicamente avanzada, son casi exclusivamente dadas como expresiones alfanuméricas (operaciones combinadas) que los procesadores matemáticos de calculadoras, computadoras y otros muchos dispositivos electrónicos resuelven numéricamente, se hace más patente la necesidad de un nuevo enfoque en la didáctica de las operaciones combinadas (que no parecen sostenerse como un tópico matemático aislado e independiente de otros…)

 

Por otra parte, he comentado en diferentes artículos de mi blog que desarrollar aplicaciones TIC sobre resolución de problemas consistentes en baterías de problemas con comprobación de la solución (entendida como un número) no supone un gran avance con respecto a una batería de problemas propuestos en material impreso (o en algún formato digital equivalente). Las aplicaciones TIC sobre resolución de problemas deben ir más allá, buscando incidir interactivamente en el meollo del proceso de resolución…



El modelo de resolución de PAEV que propone esta nueva aplicación pone el énfasis en la producción, por parte de los alumnos y alumnas, de expresiones algebraicas (operaciones indicadas) que pueden considerarse ya soluciones del problema. No obstante, la aplicación, para cada problema diferente, evalúa tanto la expresión algebraica producida como el número dado como solución... Evidentemente la aplicación implementa un nivel deseable para alumnos del tercer ciclo de la Etapa Primaria. Además, aunque no se expliciten las relaciones entre magnitudes (análisis y síntesis) éstas han de realizarse ineludiblemente para poder resolver correctamente el problema propuesto. Es por ello que se recomienda que antes se hayan trabajado otras aplicaciones que pongan de manifiesto el análisis síntesis en la resolución de PAEV, como las que se tratan en post anteriores a éste en este mismo blog.

 

Basta experimentar con la aplicación para darse cuenta de que el paso o traducción de las relaciones implícitas en el enunciado del problema a su expresión algebraica no es precisamente un proceso convergente. Muy al contrario, se trata por lo general de un proceso divergente y, por tanto, creativo Para ilustrar esta afirmación podemos analizar un ejemplo:



Las siguientes expresiones algebraicas, entre otras, serían respuestas válidas atendiendo a las restricciones que impone la aplicación (la expresión algebraica sólo puede utilizar datos presentes en el enunciado, es decir, no puede contener números que sean resultado de un cálculo previo con datos; un determinado dato, por lo general, aparece una sola vez en la expresión,… ):
1.-  ((49 x 10) : 280) : 7
2.-  ((10 x 49) : 280) : 7
3.-  ((49 x 10) : 7) : 280
4.-  ((10 x 49) : 7) : 280
5.-  (49 x 10) : 280 : 7
6.-  49 x 10 : 280 : 7
7.-  49 x 10 : 7: 280
8.-  (49 x 10 : 280) : 7
9.-  (49 x 10 : 7): 280
10.- 49 x (( 10 : 7): 280)
11.- 49 x (( 10 : 280): 7)
Lo primero que salta a la vista es que podemos hacer uso exclusivamente de paréntesis estrictamente necesarios o bien utilizar también paréntesis “personales” que sirven para reforzar la consideración de una determinada cantidad de una magnitud creada durante la fase de análisis/síntesis que no aparece de forma explícita en el enunciado del problema o bien para dar cuenta de la estrategia seguida para llegar a la solución…

Mientras que en 1, por ejemplo, se ha calculado primero el arroz total que corresponde a cada persona durante una semana, en 3 se ha calculado primero el arroz total que corresponde a todo el campamento en un día… Personalmente, encuentro que las expresiones 1 y 3 son más significativas que sus correspondientes 6 y 7, respectivamente. Y esto es, precisamente, porque hacen uso de paréntesis que aún no siendo estrictamente necesarios sí que aportan significado.

Es precisamente la economía de paréntesis la que puede dar problemas y la que da origen a convenios en la realización de determinadas secuencias de cálculo, como se ilustra en la imagen. La aplicación da por válida la expresión 49 x 10 : 280 : 7. Sin embargo puede que el alumno no realice correctamente la secuencia de cálculos. Es por ello que la aplicación también comprueba el valor numérico de la expresión algebraica.

Desde un punto de vista técnico, contemplar la divergencia en las respuestas correctas dificulta considerablemente el código y diseño de la aplicación… Pero merece la pena una aplicación así ya que favorece especialmente que el problema sea captado de manera global haciendo más patente la estructura del problema.

Los problemas que se proponen en esta aplicación manejan datos numéricos realistas y coherentes con las situaciones problemáticas presentadas. Se pretende, además, que los alumnos realicen los cálculos en línea, no en columnas, sobre la propia expresión algebraica. Para ello, se ha habilitado una zona de escritura “a mano”, que puede utilizarse tanto para ensayar la expresión algebraica solución como para realizar los cálculos.

Cuando se utiliza en clase, con la PDI, es necesario que los niños y niñas realicen el análisis/síntesis del problema y justifiquen oralmente el proceso de resolución seguido. 

Una aplicación que complementa perfectamente a ésta es "ASOCIA":