“Resolución de Problemas. Búsqueda exhaustiva
de soluciones posibles. Simulación concreta y abstracta. Construcción y
representación de soluciones…”. Bajo este título tan largo y abierto he
querido agrupar una serie de propuestas de situaciones problemáticas
caracterizadas por tener múltiples soluciones (o una solución múltiple) o bien
por presentar un espacio de búsqueda de una única solución relativamente
complejo, con diferentes estados
posibles de los diferentes elementos que configuran la solución…
Lo
que caracteriza a las propuestas que aquí se incluyen es que se facilita la
construcción de la solución por simulación, o la estrategia de tanteo
sistemático al permitir descubrir direcciones
que van encerrando la respuesta en un rango de posibilidades cada vez más
pequeño…Todo ello mediante esquemas, diagramas o representaciones interactivos
que permiten la manipulación de elementos y la simulación.
Son
numerosas las propuestas de situaciones de este tipo que podemos encontrar en
otras aplicaciones ofrecidas por
DidactmaticPrimaria: problemas abiertos sobre relaciones cuantitativas
implementados con dinero (“Relaciones numéricas_100”), tanteo sistemático por
acotación del error (“Pesa pensando”), problemas sobre relaciones de orden y
tablas lógicas (“REPRESENTAR. Una poderosa estrategia en la resolución de problemas”), generación exhaustiva de
figuras asociadas con su valor numérico (“Geofraccionador”,
“Geoconstructor”,…), retos topológicos con múltiples soluciones, etc…
Es
por ello que aquí recojo, en buena medida, situaciones
problemáticas de carácter combinatorio, no tratadas en otras aplicaciones, a
modo de interesantes, innovadoras y adecuadas investigaciones para alumnos/as del tercer ciclo de Primaria, que
inciden plenamente en contenidos del currículo de Matemáticas:
1.6.
Desarrollo de estrategias personales para resolver problemas e investigaciones.
1.7.
Utilización de recursos informáticos para la realización de actividades y la
comprensión de contenidos matemáticos.
1.13.
Utilización de recursos informáticos para la realización de actividades y la
comprensión de contenidos matemáticos.
1.11.
Confianza en las propias posibilidades y espíritu de superación de los retos y
errores asociados al aprendizaje matemático.
1.5.
Resolución de situaciones problemáticas abiertas: Investigaciones matemáticas
sencillas sobre números, cálculos, medidas, geometría y tratamiento de la información,
planteamiento de pequeños proyectos de trabajo. Aplicación e interrelación de
diferentes conocimientos matemáticos. Trabajo cooperativo. Acercamiento al
método de trabajo científico y su práctica en situaciones de la vida cotidiana
y el entorno cercano, mediante el estudio de algunas de sus características,
con planteamiento de hipótesis, recogida, registro y análisis de datos y elaboración
de conclusiones. Estrategias heurísticas: aproximación mediante ensayo-error, reformular
el problema. Desarrollo de estrategias personales para resolver problemas e investigaciones
y pequeños proyectos de trabajo.
1.8.
Desarrollo de actitudes básicas para el trabajo matemático: esfuerzo,
perseverancia, flexibilidad, estrategias personales de autocorrección y
espíritu de superación, confianza en las propias posibilidades, iniciativa
personal, curiosidad y disposición positiva a la reflexión sobre las decisiones
tomadas y a la crítica razonada, planteamiento de preguntas y búsqueda de la
mejor respuesta, aplicando lo aprendido en otras situaciones y en distintos contextos,
interés por la participación activa y responsable en el trabajo cooperativo en
equipo.
1.7.
Planificación del proceso de resolución de problemas: comprensión del
enunciado, estrategias y procedimientos puestos en práctica (hacer un dibujo,
una tabla, un esquema de la situación, ensayo y error razonado, operaciones
matemáticas adecuadas, etc.), y procesos de razonamientos, realización, revisión
de operaciones y resultados, búsqueda de otras alternativas de resolución,
elaboración de conjeturas sobre los resultados, exploración de nuevas formas de
resolver un mismo problemas, individualmente y en grupo, contrastando su
validez y utilidad en su quehacer diario, explicación oral de forma razonada
del proceso de resolución, análisis coherente de la solución, debates y
discusión en grupo sobre proceso y resultado.
1.10.
Acercamiento al método de trabajo científico y su práctica en contextos de
situaciones problemáticas, mediante el estudio de algunas de sus características,
con planteamiento de hipótesis, recogida y registro de datos en contextos
numéricos, geométricos o funcionales, valorando los pros y contras de su uso.
1.13.
Utilización de herramienta y medios tecnológicos en el proceso de aprendizaje
para obtener, analizar y selección información, realizar cálculos numéricos,
resolver problemas y presentar resultados, desarrollar proyectos matemáticos,
haciendo exposiciones y argumentaciones de los mismos dentro del grupo. Integración
de las tecnologías de la información y la comunicación en el proceso de
aprendizaje matemático.
Probablemente
algunos lectores se asusten o se sorprendan de que proponga retos de naturaleza
combinatoria en Primaria. No deben asustarse ni sorprenderse. El enfoque de las propuestas es más
cualitativo que cuantitativo. Se hace hincapié en “¿cuáles?” y no en “¿cuántas?”. ¿Por qué? Veamos
un ejemplo comentado relacionado con la propuesta “Repartos”:
Imaginemos
que nos plantemos repartir 5 pastelillos en 3 platos (cada uno asociado a un/a
niño/a), de manera que no haya ningún plato vacío. Si preguntamos “¿cuántos repartos diferentes podemos
realizar?” estoy seguro de que la mayoría de los lectores no sabrían dar
una respuesta relativamente rápida y, menos aún, justificada conceptualmente, a
pesar de que el problema maneja unos números muy sencillos… En cambio, si
solicitamos posibles soluciones (repartos diferentes posibles), rápidamente
barajarán soluciones posibles, como 3-1-1 y
2-2-1, e imposibles, como 4-1-0, y no tardarán en descubrir que la
descomposición 3-1-1 conlleva tres repartos diferentes (según el plato al que
le correspondan los tres pastelillos): 3-1-1, 1-3-1, 1-1-3. Lo mismo ocurre para la descomposición 2-2-1.
Pues bien, ¿han necesitado saber que los
tres casos ligados a cada una de las dos descomposiciones es justamente el
número de permutaciones con repetición de tres elementos en los que uno se
repite dos veces? ¡No! No es necesario este conocimiento de Secundaria para
abordar el problema. Precisamente a “¿cuántas?”
se responde al final, simplemente contando los casos obtenidos por búsqueda
exhaustiva, o bien se facilita el número total de casos posibles de antemano,
para facilitar la resolución….
Esta
argumentación tiene una excepción, la del producto cartesiano de dos conjuntos
(“Cabezas
diferentes”) y su generalización, la regla de multiplicar (“Candado.
Código secreto”). Aquí es más fácil determinar el número de “variaciones” que las propias “variaciones”. De hecho es de las pocas
cuestiones combinatorias que se proponen desde edades muy tempranas: “De cuantás maneras podemos vestir al osito
con pantalón y camiseta si disponemos de dos pantalones diferentes y tres camisetas diferentes?”
Además,
las cuestiones combinatorias se abordan
de manera inductiva, con casos particulares graduados en dificultad y en
número de posibilidades (“Permutando”). Así, se va asumiendo como
cierto que para dos objetos diferentes existen dos permutaciones diferentes,
que para tres objetos existen seis permutaciones, que para cuatro objetos
existen 24, etc… A pesar de que nos interesa más determinarlas cualitativamente
( porque conlleva el surgimiento de algoritmos
personales de búsqueda), no se elude la posibilidad de que el/la alumno/a
capte el patrón o regularidad inherente al número de permutaciones posibles ( 2
= 2x1; 6= 3x2x1; 24= 4 x 3 x 2 x1) ni su
simbología (2!=2x1; 3!=3x2x1; 4!=4x3x2x1; ….)
En
“Macedonia
de frutas” se abordan las “combinaciones” de varios elementos tomados
de tantos en tantos: subconjuntos de dos frutas diferentes cuando se dispone de
un total de seis frutas diferentes, por ejemplo, en los que el par pera-manzana es el mismo que el par manzana-pera, es decir, que no importa
el orden…Es un reto bastante apropiado para alumnos/as de estas edades. ¡Y les
encanta abordarlo! Además se transfiere
lo aprendido a otros problemas similares y se conecta numeración y geometría:
El número de combinaciones de 5 elementos tomados de dos en dos es igual al
número de segmentos (lados + diagonales) de un pentágono.
En
otras propuestas de carácter combinatorio (“Caminos_posibles”, “Caminos
tramos ‘V’ y ‘H’”, “Figuras posibles”) responder a
“cuántas” sería aún más difícil que en los casos anteriores dado que una misma
figura puede aparecer con diferentes orientaciones espaciales o intervienen
cuestiones geométricas y/o topológicas que condicionan el número de
posibilidades y no son fáciles de explicar…¡Pero se facilita, interactivamente,
la obtención de todos los casos posibles! Además, se insiste, en la codificación de las soluciones
(mediante letras y/o números).
En
“Dominó_igualación”
se persigue que el alumnado distinga los casos en que puede haber solución de
aquellos que no tienen solución así como que descubra una estrategia aritmética
eficaz para resolver los casos con solución. “Equilibrio_números_balanza”
es similar, aunque algo más difícil si no se ha descubierto la estrategia
aritmética para la igualación de dos cantidades cuya suma es un número par.
“Parking”
es la aplicación más lúdica. Se trata de un juego bastante conocido. La
solución, para cada reto propuesto, no es obvia. Implica pensar de atrás hacia
adelante y barajar diferentes estados de los elementos que intervienen en la
solución.
En "coloca" se abordan situaciones de representación de la solución con la ayuda de diferentes diagramas interactivos que tratan sobre situación espacial y problemas con relaciones de orden entre una y dos variables...
Ver, también,