INVESTIGACIÓN Y DESARROLLO de CONTENIDOS EDUCATIVOS DIGITALES MULTIMEDIA para la enseñanza-aprendizaje de las MATEMÁTICAS (Infantil-PRIMARIA y atención a la diversidad en ESO) y LENGUA en PRIMARIA. Por una enseñanza-aprendizaje de la matemática que integre las TICs con fundamento didáctico, basada en el APRENDIZAJE POR DESCUBRIMIENTO, la ATENCIÓN A LA DIVERSIDAD, el análisis crítico del currículo, el desarrollo de competencias y el fomento de LA CREATIVIDAD.
30 julio, 2018
Movimientos en el plano. Isometrías.
Publicado por
Juan García Moreno
en
22:16
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Geometría_2D
13 julio, 2018
Resolución de Problemas. Búsqueda exhaustiva de soluciones posibles. Simulación concreta y abstracta. Construcción y representación de soluciones…
“Resolución de Problemas. Búsqueda exhaustiva
de soluciones posibles. Simulación concreta y abstracta. Construcción y
representación de soluciones…”. Bajo este título tan largo y abierto he
querido agrupar una serie de propuestas de situaciones problemáticas
caracterizadas por tener múltiples soluciones (o una solución múltiple) o bien
por presentar un espacio de búsqueda de una única solución relativamente
complejo, con diferentes estados
posibles de los diferentes elementos que configuran la solución…
Lo
que caracteriza a las propuestas que aquí se incluyen es que se facilita la
construcción de la solución por simulación, o la estrategia de tanteo
sistemático al permitir descubrir direcciones
que van encerrando la respuesta en un rango de posibilidades cada vez más
pequeño…Todo ello mediante esquemas, diagramas o representaciones interactivos
que permiten la manipulación de elementos y la simulación.
Son
numerosas las propuestas de situaciones de este tipo que podemos encontrar en
otras aplicaciones ofrecidas por
DidactmaticPrimaria: problemas abiertos sobre relaciones cuantitativas
implementados con dinero (“Relaciones numéricas_100”), tanteo sistemático por
acotación del error (“Pesa pensando”), problemas sobre relaciones de orden y
tablas lógicas (“REPRESENTAR. Una poderosa estrategia en la resolución de problemas”), generación exhaustiva de
figuras asociadas con su valor numérico (“Geofraccionador”,
“Geoconstructor”,…), retos topológicos con múltiples soluciones, etc…
Es
por ello que aquí recojo, en buena medida, situaciones
problemáticas de carácter combinatorio, no tratadas en otras aplicaciones, a
modo de interesantes, innovadoras y adecuadas investigaciones para alumnos/as del tercer ciclo de Primaria, que
inciden plenamente en contenidos del currículo de Matemáticas:
1.6.
Desarrollo de estrategias personales para resolver problemas e investigaciones.
1.7.
Utilización de recursos informáticos para la realización de actividades y la
comprensión de contenidos matemáticos.
1.13.
Utilización de recursos informáticos para la realización de actividades y la
comprensión de contenidos matemáticos.
1.11.
Confianza en las propias posibilidades y espíritu de superación de los retos y
errores asociados al aprendizaje matemático.
1.5.
Resolución de situaciones problemáticas abiertas: Investigaciones matemáticas
sencillas sobre números, cálculos, medidas, geometría y tratamiento de la información,
planteamiento de pequeños proyectos de trabajo. Aplicación e interrelación de
diferentes conocimientos matemáticos. Trabajo cooperativo. Acercamiento al
método de trabajo científico y su práctica en situaciones de la vida cotidiana
y el entorno cercano, mediante el estudio de algunas de sus características,
con planteamiento de hipótesis, recogida, registro y análisis de datos y elaboración
de conclusiones. Estrategias heurísticas: aproximación mediante ensayo-error, reformular
el problema. Desarrollo de estrategias personales para resolver problemas e investigaciones
y pequeños proyectos de trabajo.
1.8.
Desarrollo de actitudes básicas para el trabajo matemático: esfuerzo,
perseverancia, flexibilidad, estrategias personales de autocorrección y
espíritu de superación, confianza en las propias posibilidades, iniciativa
personal, curiosidad y disposición positiva a la reflexión sobre las decisiones
tomadas y a la crítica razonada, planteamiento de preguntas y búsqueda de la
mejor respuesta, aplicando lo aprendido en otras situaciones y en distintos contextos,
interés por la participación activa y responsable en el trabajo cooperativo en
equipo.
1.7.
Planificación del proceso de resolución de problemas: comprensión del
enunciado, estrategias y procedimientos puestos en práctica (hacer un dibujo,
una tabla, un esquema de la situación, ensayo y error razonado, operaciones
matemáticas adecuadas, etc.), y procesos de razonamientos, realización, revisión
de operaciones y resultados, búsqueda de otras alternativas de resolución,
elaboración de conjeturas sobre los resultados, exploración de nuevas formas de
resolver un mismo problemas, individualmente y en grupo, contrastando su
validez y utilidad en su quehacer diario, explicación oral de forma razonada
del proceso de resolución, análisis coherente de la solución, debates y
discusión en grupo sobre proceso y resultado.
1.10.
Acercamiento al método de trabajo científico y su práctica en contextos de
situaciones problemáticas, mediante el estudio de algunas de sus características,
con planteamiento de hipótesis, recogida y registro de datos en contextos
numéricos, geométricos o funcionales, valorando los pros y contras de su uso.
1.13.
Utilización de herramienta y medios tecnológicos en el proceso de aprendizaje
para obtener, analizar y selección información, realizar cálculos numéricos,
resolver problemas y presentar resultados, desarrollar proyectos matemáticos,
haciendo exposiciones y argumentaciones de los mismos dentro del grupo. Integración
de las tecnologías de la información y la comunicación en el proceso de
aprendizaje matemático.
Probablemente
algunos lectores se asusten o se sorprendan de que proponga retos de naturaleza
combinatoria en Primaria. No deben asustarse ni sorprenderse. El enfoque de las propuestas es más
cualitativo que cuantitativo. Se hace hincapié en “¿cuáles?” y no en “¿cuántas?”. ¿Por qué? Veamos
un ejemplo comentado relacionado con la propuesta “Repartos”:
Imaginemos
que nos plantemos repartir 5 pastelillos en 3 platos (cada uno asociado a un/a
niño/a), de manera que no haya ningún plato vacío. Si preguntamos “¿cuántos repartos diferentes podemos
realizar?” estoy seguro de que la mayoría de los lectores no sabrían dar
una respuesta relativamente rápida y, menos aún, justificada conceptualmente, a
pesar de que el problema maneja unos números muy sencillos… En cambio, si
solicitamos posibles soluciones (repartos diferentes posibles), rápidamente
barajarán soluciones posibles, como 3-1-1 y
2-2-1, e imposibles, como 4-1-0, y no tardarán en descubrir que la
descomposición 3-1-1 conlleva tres repartos diferentes (según el plato al que
le correspondan los tres pastelillos): 3-1-1, 1-3-1, 1-1-3. Lo mismo ocurre para la descomposición 2-2-1.
Pues bien, ¿han necesitado saber que los
tres casos ligados a cada una de las dos descomposiciones es justamente el
número de permutaciones con repetición de tres elementos en los que uno se
repite dos veces? ¡No! No es necesario este conocimiento de Secundaria para
abordar el problema. Precisamente a “¿cuántas?”
se responde al final, simplemente contando los casos obtenidos por búsqueda
exhaustiva, o bien se facilita el número total de casos posibles de antemano,
para facilitar la resolución….
Esta
argumentación tiene una excepción, la del producto cartesiano de dos conjuntos
(“Cabezas
diferentes”) y su generalización, la regla de multiplicar (“Candado.
Código secreto”). Aquí es más fácil determinar el número de “variaciones” que las propias “variaciones”. De hecho es de las pocas
cuestiones combinatorias que se proponen desde edades muy tempranas: “De cuantás maneras podemos vestir al osito
con pantalón y camiseta si disponemos de dos pantalones diferentes y tres camisetas diferentes?”
Además,
las cuestiones combinatorias se abordan
de manera inductiva, con casos particulares graduados en dificultad y en
número de posibilidades (“Permutando”). Así, se va asumiendo como
cierto que para dos objetos diferentes existen dos permutaciones diferentes,
que para tres objetos existen seis permutaciones, que para cuatro objetos
existen 24, etc… A pesar de que nos interesa más determinarlas cualitativamente
( porque conlleva el surgimiento de algoritmos
personales de búsqueda), no se elude la posibilidad de que el/la alumno/a
capte el patrón o regularidad inherente al número de permutaciones posibles ( 2
= 2x1; 6= 3x2x1; 24= 4 x 3 x 2 x1) ni su
simbología (2!=2x1; 3!=3x2x1; 4!=4x3x2x1; ….)
En
“Macedonia
de frutas” se abordan las “combinaciones” de varios elementos tomados
de tantos en tantos: subconjuntos de dos frutas diferentes cuando se dispone de
un total de seis frutas diferentes, por ejemplo, en los que el par pera-manzana es el mismo que el par manzana-pera, es decir, que no importa
el orden…Es un reto bastante apropiado para alumnos/as de estas edades. ¡Y les
encanta abordarlo! Además se transfiere
lo aprendido a otros problemas similares y se conecta numeración y geometría:
El número de combinaciones de 5 elementos tomados de dos en dos es igual al
número de segmentos (lados + diagonales) de un pentágono.
En
otras propuestas de carácter combinatorio (“Caminos_posibles”, “Caminos
tramos ‘V’ y ‘H’”, “Figuras posibles”) responder a
“cuántas” sería aún más difícil que en los casos anteriores dado que una misma
figura puede aparecer con diferentes orientaciones espaciales o intervienen
cuestiones geométricas y/o topológicas que condicionan el número de
posibilidades y no son fáciles de explicar…¡Pero se facilita, interactivamente,
la obtención de todos los casos posibles! Además, se insiste, en la codificación de las soluciones
(mediante letras y/o números).
En
“Dominó_igualación”
se persigue que el alumnado distinga los casos en que puede haber solución de
aquellos que no tienen solución así como que descubra una estrategia aritmética
eficaz para resolver los casos con solución. “Equilibrio_números_balanza”
es similar, aunque algo más difícil si no se ha descubierto la estrategia
aritmética para la igualación de dos cantidades cuya suma es un número par.
“Parking”
es la aplicación más lúdica. Se trata de un juego bastante conocido. La
solución, para cada reto propuesto, no es obvia. Implica pensar de atrás hacia
adelante y barajar diferentes estados de los elementos que intervienen en la
solución.
En "coloca" se abordan situaciones de representación de la solución con la ayuda de diferentes diagramas interactivos que tratan sobre situación espacial y problemas con relaciones de orden entre una y dos variables...
Ver, también,
Publicado por
Juan García Moreno
en
19:54
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Metamodelos TICs de RP
,
Procesos_métodos_actitudes
13 junio, 2018
¿Coincidencias? (En clave de humor...)
En clave de humor...
En un principio, ABN (ese "revolucionario" e "innovador" método para el cálculo, "creado desde cero" por su creador) optó por una división de este tipo aunque, eso sí, con mucha rejilla... (Pues ese aspecto puramente formal, no original de ABN, parece ser, para ellos, la esencia de "su método"). Creo que nunca se llegó a implementar ningún modelo de división flexible con el "Tutor ABN".
Ahora, con los nuevos cuadernillos (que imagino que será una buena ocasión para "actualizar" y añadir contenidos) parece que ABN ha optado por este otro modelo de la división, íntimamente relacionado con el anterior, pero poniendo mayor énfasis en los múltiplos del divisor.
(Estas pantallas corresponden a aplicaciones mías incluidas en "ASÍ CALCULAMOS EN MI COLE")
Llamemos A al contenido mostrado en la imagen anterior y B al mostrado en la imagen siguiente. Si no consideramos aspectos tales como que A es gratuito, que A es interactivo, que A es configurable, que A es general y generativo, pues propone divisiones aleatorias (dentro de un rango numérico) y las corrige....Si no consideramos estos aspectos "irrelevantes", ¿sabrían buscar 5 diferencias entre la forma de dividir en B y A?
https://www.actiludis.com/wp-content/uploads/2018/06/Contenidos-Transicio%CC%81n-5%C2%BA.pdf |
Enlace relacionados:
Publicado por
Juan García Moreno
en
20:52
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
10 junio, 2018
SMD. Longitud, Masa y Capacidad. 3º Ciclo Primaria.
Publicado por
Juan García Moreno
en
20:02
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Medida
,
Simulación-experimental
05 mayo, 2018
Números enteros
Publicado por
Juan García Moreno
en
15:08
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Formatos_cálculo_estratégico
,
Numeración
08 abril, 2018
GEO_BASIC_2D
"Geo*Basic*2D", de Didactmaticprimaria.net |
GEO_BASIC_2D combina un conjunto de 12 geo_herramientas básicas para la realización de construcciones geométricas bidimensionales fijas (como si las trazáramos en una pizarra analógica). Además cuenta con borrador y escritura a mano.
Desde el inicio de su diseño se ha concebido para ser el equivalente digital ampliado de ese conjunto de instrumentos de trazado geométrico que no siempre tenemos disponible en las aulas, o no siempre en buen estado. ¡Con qué facilidad se pierde, por ejemplo, la ventosa del compás de pizarra! (lo digo al menos por mí). Pero pretende ir mucho más allá...
Facilita enormemente la realización de las construcciones geométricas aportando nuevas posibilidades y funcionalidades que no son posibles con las herramientas analógicas equivalentes: colocación exacta de puntos medios, borrado selectivo de todos/as los/as segmentos, rectas, semirrectas y circunferencias; borrado de trazados uno a uno comenzando por el último, tramas de puntos interactivas, poligonal dinámica mostrando longitudes de segmentos, posibilidad de construir fácilmente polígonos desplazables (tantos como se desee, iguales o diferentes, a partir de una trama de puntos o a partir de los vértices de un polígono regular configurable); tramas ortométrica e isométrica interactivas, fácil configuración de colores y grosores de segmentos; rectas desplazables, rectas paralelas y perpendiculares pulsando sobre puntos de la geo_escuadra o del geo_cartabón, fácil y exacta medición y construcción de ángulos, área interactiva de los polígonos trazados sobre tramas, fácil trazado de circunferencias y arcos, etc...
No pretende ser el extraordinario Geogebra (en su versión para Primaria), ni tan siquiera el C.a.R u otro software análogo. En este caso las construcciones realizadas no son escalables ni girables. No es que no apueste por una geometría dinámica, no. Pero no ha sido ese el propósito de esta aplicación que hace tiempo me fue sugerida por un par de lectores. Se trata de reunir productivamente herramientas geométricas que ya he utilizado en otras aplicaciones. Se ha optado por las construcciones fijas, por reducir la dificultad, por buscar un equilibrio adecuado entre sencillez de uso, vistosidad y potencial de construcción, de manera que resulte adecuado en 2º y 3º ciclos de Primaria. Así, por ejemplo, los puntos de intersección entre diferentes elementos de trazado se determinan visualmente, como se haría con construcciones realizadas en una pizarra analógica.
En principio permite realizar cualquier construcción geométrica fija con regla (no graduada) y compás (o con regla compás y escuadra), sobre todo las adecuadas a la Etapa Primaria: mediatriz de un segmento, bisectriz de un ángulo, triángulo equilátero y hexágono regular, cuadrado y otros polígonos regulares y estrellados...Se pueden formar con suma facilidad toda clase de triángulos, cuadriláteros y otros polígonos permitiendo cuantificar sus perímetros y sus áreas en diferentes unidades de longitud o superficie; facilita el fraccionamiento creativo de polígonos, la realización de diseños geométricos con intencionalidad artística, etc...
Espiral. Ejemplo de precisión y facilidad de manejo del geo_compás. La aguja del compás se sitúa con total precisión sobre el punto deseado. |
Trabajos realizados por alumnos/as de 6º (CEIP. Blas Infante, Lebrija-Sevilla) a partir de la visualización, a través de la PDI, de la construcción previamente realizada con GEOBASIC_2D |
CUADRILÁTEROS diferentes de igual área sobre trama ortométrica. |
Es ideal para la PDI y su utilización no está reñida con las versiones de Geogebra para Primaria.
En CUERPOS GEOMÉTRICOS se ofrece una amplísima colección de manipulativos virtuales 3D, dinámicos e interactivos, así como herramientas de construcción 3D (geocubo, geoprisma,..) también basados en geometría dinámica.
En ARQUIGEOM se aborda la construcción 3D con elementos desplazables tridimensionales en perspectiva isométrica.
En GEOMETRÍA 3D se aborda la construcción policúbica con cubos en perspectiva caballera.
La práctica totalidad de las aplicaciones que he desarrollado en relación con la geometría plana incorporan, cada una de ellas, numerosos manipulativos virtuales dinámicos e interactivos: ángulos, semejanza y proporcionalidad, área de figuras planas, circunferencia y trazado de polígonos polígonos regulares,...
En una línea parecida a la de GEO_BASIC_2D se sitúan aplicaciones como GEOPLANO INTELIGENTE, GEO_CONSTRUCTOR, TRAMAS INTERACTIVAS(), MULTIGEOPLANO ,...(Esta última aplicación está basada en los puntos de intersección dinámicos de un conjunto de circunferencias)...
Publicado por
Juan García Moreno
en
19:11
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
2º ciclo
,
3º ciclo
,
Geometría_2D
04 marzo, 2018
Porcentajes. Kit 3º ciclo de Primaria.
Publicado por
Juan García Moreno
en
14:12
1
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Metamodelos TICs de RP
,
Números
25 febrero, 2018
Gracias, gracias...uno también tiene su ego...
Aunque abundan en mi blog comentarios muy similares, éste me ha tocado de lleno mi ego y he decidido publicarlo aquí. Si lo tengo especialmente en cuenta es por provenir de un profesor de matemáticas y computación con 20 años de experiencia. Una persona con un perfil así sabe valorar todo lo que conlleva el desarrollo de software educativo innovador y de calidad.
¡Muchas, gracias, J.F.G!
.................................................................................................................................................................
Publicado por
Juan García Moreno
en
23:18
12
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
17 febrero, 2018
Probabilidad de sucesos simples y compuestos. Aproximación frecuencial
Publicado por
Juan García Moreno
en
21:19
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Estadística y Probabilidad
,
Simulación-experimental
11 febrero, 2018
Experimentos aleatorios. Equipamiento configurable.
Experimentos aleatorios. Equipamiento experimental. Didactmaticprimaria.net |
En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su "ACEPCIÓN FRECUENCIAL". La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios.
Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).
El kit de situaciones experimentales que aquí se presenta, supone una primara aproximación, más bien informal, a esta temática. Se brindan situaciones experimentales de naturaleza aleatoria. Se pretende, a partir de la experiencia, formalizar conceptos tales como "SUCESO", "FRECUENCIA ABSOLUTA", "FRECUENCIA RELATIVA", "CASOS FAVORABLES", "CASOS POSIBLES" O "PROBABILIDAD" (Mediante la fórmula de Laplace)...Se incide de lleno en el paso de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza).
Con estas situaciones de simulación_experimentación se pretende apoyar el desarrollo del razonamiento inductivo, el aprender a intuir, plantear hipótesis, hacer conjeturas, generalizar… A nivel de aprendizaje, no debemos poner en duda que la forma de razonar puede tener tanto interés como los propios contenidos conceptuales; que el razonamiento es, en sí mismo, un gran contenido a aprender y totalmente irrenunciable en Matemáticas
De manera análoga, se pretende apoyar el desarrollo del razonamiento argumentativo o deductivo, animando a los/as alumnos/as a ensayar argumentaciones cada vez más fundamentadas y convincentes… motivándolos en la capacidad para detectar inconsistencias en los razonamientos propios y ajenos, a que se enfoquen en explicar, verificar, comunicar, sistematizar y descubrir...
Este kit, favorecer una actitud positiva ante la experimentación y la simulación y el desarrollo de la confianza en la propia capacidad para experimentar, descubrir y comunicar.
Publicado por
Juan García Moreno
en
19:25
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Estadística y Probabilidad
,
Simulación-experimental
Suscribirse a:
Entradas
(
Atom
)