En los geoplanos analógicos (y en la mayoría de los virtuales) los puntos de anclaje, que son vértices de los polígonos que podemos formar, son fijos. En un geoplano ortométrico no se puede conseguir un triángulo equilátero. En un geoplano isométrico no se puede conseguir un cuadrado…¿Y si se diseña un geoplano con puntos de anclaje variables de tal modo que permita obtener, entre muchos otros polígonos, todos los tipos de triángulos y cuadriláteros?
He denominado multigeoplano a esta aplicación en la que se pueden utilizar, a lo sumo, cuatro círculos desplazables de igual radio. Al desplazar los círculos, se muestran los puntos de intersección de sus correspondientes circunferencias (12 puntos como máximo), que serán potenciales vértices de polígonos. A ellos se pueden añadir los puntos que son centro de cada uno de los círculos.
El desplazamiento de los círculos se puede realizar de manera libre (a cualquier posición del plano) o ajustando las posiciones de sus respectivos centros a posiciones discretas del plano gracias a la posibilidad de atracción a los vértices de una cuadrícula. Esto permite ajustar las posiciones relativas de dos círculos cualesquiera con la precisión deseada para que sean tangentes o bien secantes y, si se desea, obtener una disposición de puntos simétrica con respecto a alguno de los ejes de coordenadas… De esta manera se obtienen numerosas configuraciones diferentes de puntos de indudable interés para servir de soporte a razonamientos geométricos al alcance de alumnos del segundo y tercer ciclo de Primaria. Así, por ejemplo, se puede obtener el frecuentemente utilizado geoplano ortométrico de 3x3 puntos. Por otra parte, se pueden obtener triángulos y cuadriláteros de cualquier tipo…
Como es habitual en los materiales didácticos de DIDACTMATICPRIMARIA, se ofrece la opción de manipulación libre así como un buen número de retos de búsqueda de polígonos que cumplan unas determinadas condiciones… Siguiendo el criterio didáctico de los que en su día denominé “geoplanos inteligentes” y “geofraccionadores”, la manipulación libre es una MANIPULACIÓN AUMENTADA dado que, de manera interactiva, se informa de la clase de polígono obtenido así como de su área (tomando como unidad de superficie la de un cuadrado de la cuadrícula).
La semitransparencia de los diferentes polígonos obtenidos en una misma pantalla así como el que éstos sean desplazables permite compararlos entre sí por superposición. También permiten dejar ver la cuadrícula para comparar-cuantificar su área en relación con la unidad cuadrada. Las circunferencias ayudan a percibir simetrías y distancias iguales o diferentes entre puntos...Además se pueden medir con precisión distancias y longitudes con cualquier orientación mediante la regla graduada... Todos estos son aspectos de indudable interés didáctico para ayudar a descubrir relaciones geométricas. Así, por ejemplo, los puntos de intersección y centros de dos circunferencias secantes siempre son los vértices de un rombo...
Aún incidiendo de lleno (y de manera no rutinaria) en la CLASIFICACIÓN DE POLÍGONOS lo que se pretende fundamentalmente con esta aplicación es el desarrollo de LA PERCEPCIÓN ANALÍTICA del alumnado. En este sentido hay que tener en cuenta que famosos programas de enriquecimiento instrumental (como el PEI de Feuerstein, diseñado sobre la teoría de la modificabilidad estructural cognitiva y destinado al desarrollo de la inteligencia) contaban con instrumentos para trabajar la Organización de Puntos, la Percepción Analítica y la Orientación Espacial.
Por otra parte, la actividad que aquí se propone y promueve es tan antigua como el ser humano. Desde los albores del nacimiento del ser humano éste ha mirado el firmamento de noche y las estrellas (puntos) le han servido de estímulo para su inteligencia, creatividad y fantasía al componer y visualizar mentalmente figuras obtenidas uniendo puntos (estrellas)…