07 enero, 2016

Divisibilidad en Primaria.








Alusiones a la DIVISIBILIDAD en la Orden de 17 de marzo de 2015, por la que se desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.

Criterio de evaluación (para 3º ciclo de Primaria):
C.E.3.4. Leer, escribir y ordenar en textos numéricos académicos y de la vida cotidiana distintos tipos de números (naturales, enteros, fracciones y decimales hasta las centésimas), utilizando razonamientos
apropiados e interpretando el valor de posición de cada una de sus cifras.


2.10. Divisibilidad: múltiplos, divisores, números primos y números compuestos. Criterios de divisibilidad.2.25. Obtención de los primeros múltiplos de un número dado.2.26. Obtención de todos los divisores de cualquier número menor que 100.
Criterio de evaluación (para 3º ciclo de Primaria):
C.E.3.5. Realizar, en situaciones de resolución de problemas, operaciones y cálculos numéricos sencillos, exactos y aproximados, con números naturales y decimales hasta las centésimas, utilizando diferentes procedimientos mentales y algorítmicos y la calculadora.
2.25. Obtención de los primeros múltiplos de un número dado.2.26. Obtención de todos los divisores de cualquier número menor que 100.

En Primaria se puede afirmar que el primer acercamiento a los contenidos propios de la DIVISIBILIDAD se produce con la construcción de las series aritméticas ascendentes comenzando por el cero, es decir, contando de "tantos en tantos" a partir de cero. Este es el procedimiento de construcción de la serie ordenada de los múltiplos de un número cualquiera.

Si contamos una cantidad de billetes de 5 euros y vamos anotando los valores obtenidos tendremos una serie ordenada de múltiplos del 5. La construcción de la propia serie sirve como estrategia para resolver problemas tales como:
  • ¿Puedo conseguir 35 euros sólo con billetes de 5 euros? ¿Y 42 euros?
  • ¿Cuántos billetes de 5 euros se necesitan para juntar 55 euros?
Si visualizamos la serie de los múltiplos de 60, por ejemplo, encontraremos números terminados exclusivamente en 60 - 20 - 80 - 40 - 00 ...lo que facilita el descubrimiento y expresión de un criterio para determinar si un número determinado es, o no, múltiplo de 60.

Contar de "tantos en tantos" a partir del cero es la base de la construcción de las tablas de multiplicar pitagóricas (que también son las tablas de dividir). Es indudable que éstas han de construirse y memorizarse ya que constituyen un conjunto relativamente reducido de hechos numéricos indispensables para alcanzar competencia en el cálculo multiplicativo. 

En la tradición escolar la primera fase del aprendizaje de las tablas es una tarea totalmente convergente (7 x 5 = 35, factores --->producto), lo cual es lógico. La expresión de esta relación de todas las maneras posibles  es la verdadera expresión de la relación de DIVISIBILIDAD (7 x 5 = 35 --->5 x 7 = 35 ---> 35 : 7 = 5 ---> 35 : 5 = 7 ) y permite introducir el vocabulario específico básico (producto, factor, múltiplo, divisor...) y conceptos ligados a esos términos.

Dado que “divisor” tiene significados diferentes como uno de los términos de una división y como factor de un número, un contexto ideal para la introducción del vocabulario específico de la DIVISIBILIDAD es la división exacta ya que en ella el divisor es realmente factor o divisor del dividendo (lo que no es cierto para la división entera).

Los que apostamos por un cálculo pensado y flexible a partir de la descomposición numérica  vemos la necesidad de adelantar contenidos de divisibilidad para la realización de multiplicaciones y divisiones “por partes”. Nótese, por ejemplo, que la propiedad distributiva del producto con respecto a la suma o resta es una consecuencia directa del hecho de que la suma (o resta) de dos múltiplos de un número es un nuevo múltiplo del número:

  • 6 x 45 = 6 x (40 + 5) = 240 + 30 = 270 (hemos obtenido el múltiplo de 6 deseado – el 270- como suma de otros dos múltiplos de 6)
  • 6 x 45 = 6 x (50 - 5) = 300 - 30 = 270 (hemos obtenido el múltiplo de 6 deseado – el 270- como resta de otros dos múltiplos de 6)

También en la división el dividendo puede distribuirse y permitir una realización de la división por partes en la que todas y cada una de las partes (si la división es exacta) pueden ser múltiplos del divisor o todas menos una (si la división es entera):
  • 153 : 9 = (90 + 63) : 9 = 10 + 7 =17.
  • 154 : 9 = (90 + 63 + 1) : 9 = 10 + 7 + 1/9 = 17 + 1/9.

Es por ello que la multiplicación debe transcender el simple conocimiento y uso de las tablas pitagóricas y ser una búsqueda pensada de múltiplos.


Evidentemente la relación de divisibilidad es reversible. Por eso, a partir de aquí, hay que retomar y enfocar las tablas de multiplicar no sólo en la dirección convergente (factores ---> producto) sino, sobre todo, en la dirección divergente (producto ---> factores) a la par que se “extienden” éstas por ser partes de conjuntos más amplios (cualquier número tiene infinitos múltiplos...).

Buscar dos o más factores para un número es un proceso divergente (creativo), como he mencionado anteriormente. Si hasta este momento el/la alumno/a tenía que saber que 7 x 8 = 56, ahora debe descubrir y formalizar que 56 = 7 x 8; 56 = 4 x 14; 56 = 2 x 28; etc.

Este hecho divergente permite apreciar y obtener ya diferentes formas de agrupar una determinada cantidad de objetos (56 caramelos ---> 7 bolsas x 8 caramelos/bolsa ; 56 caramelos ---> 4 bolsas x 14 caramelos/bolsa; etc.).

A partir de aquí, la progresión en el dominio de la divisibilidad puede seguir diferentes caminos que acaban solapándose unos con otros y reforzándose:

22 noviembre, 2015

Formatos interactivos para la enseñanza-aprendizaje del cálculo de divisiones.







En su día, la publicación de "Así calculamos en mi cole" supuso la oferta más extensa, variada y evolucionada de formatos digitales interactivos para la enseñanza-aprendizaje de un cálculo Pensado y Flexible a partir de la Descomposición Numérica. Entre esos formatos destacaban por su innovación aquellos que mostraban algoritmos numéricos, extendidos y flexibles, de las operaciones desarrollándose a la par y en correspondencia con las acciones realizadas por los/as alumnos/as sobre elementos gráficos y manipulativos presentes en las pantallas... Ese aspecto tan interesante desde el punto de vista didáctico ha marcado y marcará tendencia. De hecho están apareciendo algunas aplicaciones con este mismo propósito pero demasiado toscas aún en su interactividad y excesivamente elementales en relación con la naturaleza de los retos propuestos a los/as alumnos/as...

Fiel al principio de la evolución y mejora continua, en coherencia con la gran riqueza, variedad, excelente interactividad y creatividad de los modelos dinámicos que ofrece Didactmaticprimaria para todos y cada uno de los bloques del currículo de matemáticas, aquellos también han sufrido mejoras y ampliaciones.

Así, para la división, he desarrollado aplicaciones con el mismo funcionamiento que las que ilustran la división con billetes y monedas del euro (sin y con decimales) aunque con etiquetas numéricas (sin y con decimales) para que las diferentes nacionalidades y monedas no supongan un hándicap en su uso. A su vez, estas aplicaciones incorporan mejoras sutiles en relación con la corrección de manipulaciones y/o respuestas erróneas (como el bloqueo/desbloqueo de billetes y monedas -ídem para etiquetas-) colocadas en las zonas de reparto…

Por otra parte, se ha incorporado la división con regletas de Cuisenaire (que no figuraba en "Así calculamos en mi cole"-2010-2011) gracias a la implementación de un sencillo y eficaz “cortador de regletas”. También “Repartiendo pastelillos en platos” supone una mejora (en cuanto a funcionamiento, generalidad e interactividad) de  una aplicación análoga para ilustrar la división que se incluía en “MatemáTICas Primaria” (2007-2008)…

También la división a partir de la descomposición del dividendo en múltiplos del divisor se ha ampliado y conectado directamente con la multiplicación mediante la aplicación Número de veces que contiene el dividendo al divisor.

De manera intencionada no ofrezco en este menú la aplicación interactiva para tratar de manera gradual el algoritmo tradicional de la división que incluí en MatemáTICas Primaria. ¿Por qué? Pues simplemente porque no tendría cabida dentro de un cálculo que he etiquetado como PFDN (simplemente para indicar que no debe asociarse ni atribuirse a ninguna otra etiqueta) y porque yo no lo utilizo con mis alumnos/as.



15 noviembre, 2015

Modelos TICs de Resolución de Problemas de Matemáticas en el VI Encuentro Provincial del profesorado de Matemáticas. Sevilla.

Cartel del VI Encuentro.

La Universidad Pablo de Olavide acogió los días 11, 12 y 13 de noviembre del 2015 el VI Encuentro Provincial del Profesorado de Matemáticas de Sevilla, cuyo lema es "Matemáticas con arte".

La conferencia inaugural del encuentro, a cargo de D. Ángel Requena Fraile se dedicó al Turismo matemático como recurso didáctico. Tengo que reconocer que era como escuchar a un sabio. ¡Genial! El título coincide con el de un blog suyo desde el que se pueden descargar las interesantísimas diapositivas de su presentación, aunque no son nada comparadas con sus comentarios. En el blog, en cambio, aparecen comentadas.

"El arte con matemáticas es, si cabe, más bello.  Las matemáticas no son sólo una ciencia útil para la vida material o una aventura del pensamiento, también son un instrumento para el goce..."

Por mi parte, durante los días 11 y 12 colaboré en el VI Encuentro impartiendo el taller MODELOS TICs DE RESOLUCIÓN DE PROBLEMAS. Aunque el texto completo del taller no es un formato adecuado para transmitir el contenido de un taller eminentemente interactivo y no supone sino un conjunto de brochazos gruesos para tratar de describir gráficamente esta temática, lo ofrezco aquí para quien pudiera estar interesado:

Acceso a los textos completos de los TALLERES.
Acceso a los textos completos de la COMUNICACIONES.

08 noviembre, 2015

20 problemas aditivos de cambio. Animados. Para 1º de Primaria.

20 Problemas animados, aditivos, de CAMBIO. Para 1º de Primaria.


No cabe duda de que las TICs pueden ofrecer nuevos escenarios (en la RESOLUCIÓN DE PROBLEMAS) con nuevas posibilidades (corrección - autorregulación del proceso-, interactividad, simulación, experimentación, mayor  riqueza en los lenguajes de presentación, mayor variedad y control en las fases intermedias de resolución, mayor variedad en la forma de resolver un problema, etc...). Y no cabe duda de que Didactmaticprimaria ha profundizado de manera pionera en estos aspectos.
                
Esta aplicación presenta un modelo TIC de resolución no rutinaria de elementales problemas aditivos de CAMBIO que puede englobarse, a su vez, dentro del metamodelo de ESTRUCTURACIÓN.
                
En los problemas de cambio se parte de un conjunto inicial de elementos a los que se agrega o quita una cantidad de elementos de la misma naturaleza. De esta manera, las partes constituyentes del problema son la SITUACIÓN INICIAL, EL CAMBIO PRODUCIDO Y LA SITUACIÓN FINAL. La manera más rutinaria y frecuente de presentarlos es de forma verbalizada, fundamentalmente escrita (con frecuencia ilustrados con una imagen estática), dando dos cualesquiera de estas partes y preguntando por la tercera.
               
En esta aplicación, gracias a las TICs, SE REDUCE LA ABSTRACCIÓN haciendo hincapié en la visualización del cambio (y de las situaciones inicial y final) permitiendo pasar de manera gráfica y dinámica de la situación inicial a la final, y viceversa. De esta manera, además de hacer más atractivo el problema, se hace más patente la reversibilidad que caracteriza a cualquier problema aditivo de cambio: si de la situación inicial se pasa a la final aumentando, de la situación final se pasará a la inicial disminuyendo la misma cantidad, y viceversa. La reversibilidad del pensamiento puesto en juego en la resolución de estos problemas facilitará la reinterpretación de un problema de suma en otro de resta, y viceversa. Ser hace así más patente que suma y resta son la misma estructura aditiva.
                
No se facilitan a los/as alumnos/as  los datos de manera explícita ni se formula pregunta alguna. Resolver el problema aquí es completar con números un texto sencillo que se aproxima a un argumento lógico que relaciona la situación inicial, la final y el cambio producido. Por lo general bastará interpretar correctamente la situación y contar los elementos gráficos para determinar cuantitativamente situación inicial, cambio y situación final. Pero no siempre esto es posible para alumnos/as  de estas edades (primero de Primaria, como referencia) dado que el cambio es dinámico, diferentes elementos se mueven a la par y esto dificulta su recuento...En estos casos el cambio puede considerarse como  desconocido y tendrá que deducirse de la situación inicial y final. 
                               
Los/as alumnos/as pueden completar los tres datos numéricos correspondientes a los tres elementos del problema en el orden que deseen. El texto a completar  no  siempre  se  ajusta  a la secuencia temporal implícita o explícita en la situación. Esto se ha diseñado intencionadamente así para obligar al alumno a que reformule mentalmente la situación a partir de la correcta comprensión de los tres elementos del problema. Para facilitar la resolución, el botón <VER> se puede pulsar tantas veces como se desee para alternar situación inicial /situación final y visualizar el cambio tantas veces como se desee

Este modelo también se encuentra en la aplicación "Elefantes". Para este nivel (1º de Primaria) y en relación con los problemas de COMPARACIÓN (algo más difíciles) recomiendo la muy atractiva aplicación "Granja (1 y 2)", entre otras.

15 octubre, 2015

Muñecos articulados y marioneta. Geometría del cuerpo humano.





El razonamiento espacial actúa sobre figuras geométricas (tridimensionales y planas) por medio de operaciones básicas entre las que destacan el análisis  (descomposiciones diversas de un mismo todo) y la síntesis (combinaciones diferentes de las mismas partes; las mismas partes constitutivas del muñeco articulado pueden combinarse, distribuirse u organizarse de maneras diferentes originando posturas diferentes) teniendo en cuenta la orientación espacial y las posiciones de las figuras en el espacio.

“Muñecos articulados y marioneta” reproduce la geometría esencial del cuerpo humano, del esquema corporal, favoreciendo el análisis y la síntesis para desarrollar tanto un pensamiento convergente (las diferentes partes se organizan para configurar un mismo todo- un mismo muñeco articulado- como divergente (las mismas partes – diferentes segmentos o piezas del muñeco articulado- se organizan formando muñecos que son diferentes –diferentes posturas-), fundamentales  para el pensamiento inventivo y creativo.

Los retos propuestos ponen en juego la observación sistemática, la percepción analítica y la comparación (similitudes y diferencias, grado en que una parte es diferente a su homóloga…).

“Muñecos articulados” presenta menos dificultad que “Marioneta”. A su vez, en “Muñecos articulados” se han contemplado dos niveles de dificultad (cada uno de ellos con 30 retos diferentes).  La diferencia entre una parte del muñeco que hay que modificar (girándola) y su homóloga en el muñeco estático propuesto– estado final al que hay que llegar- viene dada por un giro de un determinado valor. Para facilitar la correcta y exacta resolución de los retos propuestos, los giros posibles toman valores discretos (amplitudes angulares que son múltiplos de 30°, en el nivel 1, y múltiplos de 15°, en el nivel 2).


Dada la importancia de la figura humana para comunicar (acciones, sentimientos, …), su frecuente uso visual-plástico-artístico en nuestra sociedad y teniendo en cuenta, también, su adecuación al estadio evolutivo del dibujo en niños/as de Primaria, esta aplicación tiene un valor formativo interdisciplinar indudable. Esto la hace especialmente adecuada para su inclusión en UDIs interdisciplinares (Matemáticas-Educación Física-Plástica-Comunicación...)

Algunas ideas: Reproducir, sobre cartulina, las diferentes partes de un muñeco articulado similar al de esta aplicación. Hacer copias suficientes (al menos un muñeco articulado para cada alumno/a). Colorear los muñecos atendiendo a diferentes criterios y unir sus piezas de manera que permitan el giro de cada una de ellas. Elaborar luego, colectivamente, un gran mural que pueda servir para decorar un pasillo o un aula aportando cada alumno/a un muñeco con una postura diferente a la de los demás...

También se podría acompañar cada muñeco de un rótulo indicando la acción u emoción que cada postura sugiere a los/as alumnos/as, después de realizar un torbellino de ideas y consensuar la más adecuada para cada muñeco...

10 agosto, 2015

Elefantes. Para 1º de Educación Primaria.


(Ver a pantalla completa)


Una aplicación que interrelaciona la estadística elemental (recuento y registro en forma de tabla) con la suma y resta (complemento al 10, 20, 30, 40 y 50) y con sencillos problemas aditivos de cambio

Además de los retos propuestos, la aplicación tiene mayor potencial didáctico, pues se puede pedir a los/as alumnos/as que interpreten los datos de cada fila y columna.

21 junio, 2015

El tratamiento del cálculo en el currículo correspondiente a la Educación Primaria en Andalucía.¿Ambigüedad o contradicción?

La Orden de 17 de marzo de 2015 desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.

Me voy a centrar aquí exclusivamente en el área de Matemáticas, y más concretamente en el tratamiento del cálculo en dicha orden. 

En primer lugar observo que las cuestiones generales sobre el mismo vienen muy bien recogidas, de manera coherente y fundamentada didácticamente, tanto en la presentación del bloque 2 ("Números") como en las orientaciones metodológicas. Personalmente comparto la gran mayoría de estas indicaciones. Sin embargo, a medida que se relacionan los objetivos y contenidos con los criterios de evaluación y con los indicadores de éstos, percibo ciertas ambigüedades e incluso contradicciones que creo que no son producto de una incorrecta interpretación por mi parte.

He recogido en 10 puntos, y literalmente, las indicaciones más generales que sobre numeración, cálculo y resolución de problemas aritméticos escolares se expresan en esta orden :
  • (1) Se entiende la alfabetización numérica como “la capacidad para enfrentarse con éxito a situaciones en las que intervengan los números y sus relaciones”.
  • (2) Se entiende el desarrollo del significado numérico como “el dominio reflexivo de las relaciones numéricas  que se pueden expresar en capacidades como: habilidad para descomponer números de forma natural, comprender y utilizar la estructura del sistema de numeración decimal, utilizar las propiedades de las operaciones y las relaciones entre ellas para realizar cálculos mentales y razonados”.
  • (3) “Es importante resaltar que para lograr esta competencia no basta con dominar los algoritmos de cálculo escrito; se precisa también desarrollar estrategias de cálculo mental y aproximativo…” 
Aquí percibo cierta separación entre algoritmos de cálculo escrito y las estrategias de cálculo mental. Sin embargo esta separación no ha de ser necesariamente así, ni es lo más conveniente. Los algoritmos de cálculo escrito pueden apoyarse en las mismas propiedades de las operaciones básicas y en estrategias de cálculo similares a las del cálculo mental, solo que facilitándolas gradualmente con el apoyo que supone la expresión y visualización de los pasos intermedios registrados. 
  • (4) “Los números han de ser usados en diferentes contextos, sabiendo que la comprensión de los procesos desarrollados y el significado de los resultados es un contenido previo y prioritario, que va más allá de la mera destreza de cálculo”.
Comprensión y significado se priorizan sobre la mera destreza en el cálculo. Totalmente de acuerdo. Entiendo que la mera destreza en el cálculo hace alusión a la automatización de procedimientos de cálculo.
  • (5) “Interesa principalmente la habilidad para el cálculo con diferentes procedimientos y la decisión en cada caso sobre el que sea más adecuado. A lo largo de la etapa, se pretende que el alumnado calcule con fluidez y haga estimaciones razonables, tratando de lograr un equilibrio entre comprensión conceptual y competencia en el cálculo.”
Lo encuentro ambiguo puesto que anteriormente (4) se ha indicado que la comprensión conceptual es parte prioritaria de la competencia en el cálculo. Creo que se ha utilizado competencia en el cálculo como sinónimo de destreza en el cálculo lo cual contradice en cierta forma y empobrece la indicación dada en el punto 4.
  • (6) “La construcción de los distintos tipos de números a lo largo de las tres etapas y del sistema decimal como base de nuestro sistema de numeración, debe ser desarrollada de forma contextualizada buscando preferentemente situaciones cercanas a las niñas y niños, usando materiales manipulables específicos: regletas de Cuisenaire, bloques multibase, multicubos, etc. Dentro de este proceso de construcción se irán desarrollando, de forma paralela e interrelacionada, las operaciones aritméticas.”
  • (7) “Es conveniente que los alumnos y alumnas manejen con soltura las operaciones básicas con los diferentes tipos de números, tanto a través de algoritmos de lápiz y papel como con la calculadora. Asimismo, es importante que el alumnado utilice de manera racional estos procedimientos de cálculo, decidiendo cuál de ellos es el más adecuado a cada situación y desarrollando paralelamente el cálculo mental y razonado y la capacidad de estimación, lo que facilitará el control sobre los resultados y sobre los posibles errores en la resolución de problemas".
  • (8) “Los problemas aritméticos escolares no deben ser entendidos como un instrumento de comprobación del manejo de las operaciones elementales sino como un recurso fundamental para la comprensión de los conceptos de suma, resta, multiplicación y división. El alumno o la alumna sabrá sumar cuando se sea capaz de resolver una situación problemática en la que la suma sea la operación que deba usarse. Los problemas aritméticos se graduarán pasando de situaciones que se resuelven en una etapa a aquellas de dos o tres etapas.”
  • (9) “Los problemas aritméticos deberán tener en cuenta las diferentes categorías semánticas y graduarse en función de su dificultad”
  • (10) “Los números han de ser usados en diferentes contextos: juegos, situaciones familiares y personales, situaciones públicas, operando con ellos reiteradamente, sabiendo que la comprensión de los procesos desarrollados y del significado de los resultados es contenido previo y prioritario respecto a la propia destreza en el cálculo y la automatización operatoria.”
Totalmente de acuerdo. Se vuelve a repetir, reforzándolo, el punto 4  que luego se ve oscurecido o diluido en el punto 5.
Para 1º ciclo de Primaria se expresa el siguiente criterio de evaluación:
C.E.1.5. Realizar, en situaciones cotidianas, cálculos numéricos básicos con las operaciones de suma y resta aplicando sus propiedades, utilizando procedimientos mentales y algorítmicos diversos, la calculadora y estrategias personales.
Para este criterio, se expresan, entre otros, los siguientes indicadores:
MAT.1.5.1. Realiza operaciones de suma y resta con números naturales. Utiliza y automatiza sus algoritmos, aplicándolos en situaciones de su vida cotidiana y en la resolución de problemas. (CMCT).
MAT.1.5.2. Utiliza algunas estrategias sencillas de cálculo mental: sumas y restas de decenas y centenas exactas, redondeos de números, estimaciones del resultado por redondeo, cambiando los sumando si le es más fácil. (CMCT, CAA).
MAT.1.5.3. Aplica las propiedades de las operaciones y las relaciones entre ellas. (CMCT).
Nada que objetar si no fuera por la ambigüedad que supone la expresión de los siguientes contenidos para el bloque "Números".
2.16. Cálculo de sumas utilizando el algoritmo. 2.17. Cálculo de restas utilizando el algoritmo.
 ¿En qué quedamos?¿El algoritmo o algoritmos diversos?

El contenido siguiente, para 2º ciclo de Primaria, y el indicador MAT.2.5.1 parecen sacarnos de dudas (o sumirnos definitivamente en la duda y la contradicción):
2.18. Utilización de los algoritmos estándar de sumas, restas, multiplicación por dos cifras y división por una cifra, aplicándolos en su práctica diaria. Identificación y uso de los términos de las operaciones básicas.
MAT.2.5.1. Realiza operaciones utilizando los algoritmos estándar de suma, resta, multiplicación y división con distintos tipos de números, en comprobación de resultados en contextos de resolución de problemas y en situaciones cotidianas. (CMCT, CAA). 
¿Significa lo anterior que en primer ciclo se pueden utilizar algoritmos de lápiz y papel diversos y en segundo ciclo hay que cambiar a los algoritmos estándar?
No cabe duda sobre lo que se entiende por algoritmos estándar. Son los algoritmos tradicionales, los de toda la vida, los de nuestros tatarabuelos, los que utilizaron Menéndez Pelayo (1865) o Federico García Lorca (1908) en sus pruebas de reválida, como muy bien nos muestra Antonio R. Martín en "Los algoritmos tradicionales de las operaciones aritméticas:¡Han muerto, pero no han sido enterrados!"

¿Cómo es que después de un adecuado enfoque del cálculo, tanto en la presentación del bloque "Números" como en los objetivos del área, orientaciones metodológicas y criterios de evaluación aparecen luego, como sombras negras, sin fundamentación didáctica alguna, contenidos e indicadores que desdicen lo anterior?

¿Cómo se puede justificar esta ambigüedad o manifiesta contradicción? Admito, personalmente, que entre los algoritmos de lápiz y papel tengan cierta cabida, por su valor histórico y testimonial, los algoritmos estándar; pero defiendo que para cada una de las operaciones aritméticas existen diversos algoritmos de lápiz y papel mejor fundamentados que los algoritmos estándar y más adecuados para conseguir la competencia en el cálculo.


Ana María Juan. 3ºA. Curso 2014_2015. CEIP. Blas Infante. Lebrija (Sevilla)

Así divide Ana María J. y otros/as alumnos/as de 3º de Primaria de mi cole. Maneja los decimales pensando que está repartiendo una cantidad de euros entre un determinado número de personas. Expresa y entiende perfectamente un número decimal de euros (euros enteros más céntimos)... Evidentemente no se trata del algoritmo estándar de la división. Si bien ella no sabe resolver mentalmente y de manera exacta la división, sí sabe que el resultado debe ser algo menor que 10. Es obvio que en el algoritmo de lápiz y papel en el que se apoya hace uso de su grado actual de cálculo mental. Otros/as alumnos/as con menor grado de cálculo mental utilizarían cocientes intermedios más sencillos....No hay ruptura entre el procedimiento algorítmico escrito y el desarrollo de estrategias de cálculo mental.

¿Está esto en contra de las indicaciones sobre cálculo de la Orden citada al inicio? ¿No es posible desarrollar la competencia del cálculo al margen de los algoritmos estándar? ¿Son los algoritmos estándar los más apropiados para lograr competencia en el cálculo?

¿Qué intereses son los que mantienen a ultranza los algoritmos estándar de las operaciones básicas en el currículo de matemáticas de Primaria?


26 mayo, 2015

Reflexionando sobre la educación. Stephen Ball y Pierre Lévy

A modo de continuación con la última pregunta que planteo en la entrada anterior (¿Qué relación guarda toda esta filosofía con la cultura de la performatividad en la educación?) y para favorecer el conocimiento experto y la reflexión sobre esta temática, presento aquí una entrevista realizada a Stephen Ball.

Estandarización y docencia. Stephen Ball.




Me parece también muy interesante para la reflexión esta conferencia sobre "Inteligencia Colectiva para Educadores", de Pierre Lévy.


24 mayo, 2015

"Taller de Poliedros". Ejemplo de Unidad Didáctica Integrada.


Taller de poliedros. Ejemplo de Unidad Didáctica Integrada.

Ejemplo de UDI basada en el área de matemáticas diseñada para el 3º ciclo de Educación Primaria.
"Todo proceso de enseñanza-aprendizaje debe partir de una planificación rigurosa de lo que se pretende conseguir, teniendo claro cuáles son los objetivos o metas, qué recursos son necesarios, qué métodos didácticos son los más adecuados y cómo se evalúa el aprendizaje y se retroalimenta el proceso" (Orden de 17 de marzo de 2015, por la que se desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.)

He querido con esta UDI ajustarme al modelo emergente de programación integrada que se propone en trabajos como el que sigue (sobre Integración de las Competencias Básicas en Andalucía) para experimentar las luces y las sombras de la "planificación rigurosa":


Como mi pensamiento es eminentemente práctico, planifico ante todo en forma de tareas y actividades. Estas, dada mi experiencia, son las que vienen primero a mi mente y no me resulta difícil estructurarlas de manera coherente y darles unidad. Las tareas que tenía en mente, previo a la realización de la UDI y antes de formularlas, se ajustaban perfectamente a las orientaciones metodológicas. Casi con esto me bastaba... Los demás elementos de planificación  no han tenido para mí tanto peso como las orientaciones metodológicas. No obstante, me han servido para ir y venir de las actividades y tareas a dichos elementos (objetivos, contenidos, criterios de evaluación,...), y viceversa, para así ampliar, suprimir y/o modificar actividades de manera que se ajustara la integración de los elementos curriculares de manera más coherente .

No me ha resultado fácil (ni en tiempo ni en esfuerzo y a pesar de mi gran experiencia en el tema) realizar la integración de los elementos, sobre todo porque  los formatos normales en que nos comunicamos por escrito son insuficientes, al menos para mí, para crear una tabla tal que integre de manera clara, atractiva y eficaz la totalidad de los elementos de planificación haciendo corresponder, además, unos con otros. Necesitaríamos, para ello, una "sábana" enorme que no resultaría nada práctica... Además, son tantos los elementos curriculares a integrar que continuamente he sentido la fragmentación de mi pensamiento "integrado", la sensación de tener que encajar sobre el papel numerosas piezas de un puzle que yo ya sé encajar en mi pensamiento y desarrollar en mi desempeño profesional docente...

Así, por ejemplo, he incluido los indicadores (INDICADORES CORRESPONDIENTES A LOS CRITERIOS DE EVALUACIÓN del grado de adquisición de las Competencias Básicas - que son concreción y secuenciación de los estándares de aprendizaje evaluables) sin hacerlos corresponder con las actividades sino con las tareas, dado que son muchas las actividades propuestas y hay indicadores que se repiten. ¿Qué hacer con los indicadores que se repiten en determinadas tareas? ¿Repetirlos en los documentos de planificación? ¿Marcarlos como especialmente relevantes?  Otro motivo por el que presento los indicadores por tareas es la constatación de una dificultad añadida: una determinada actividad puede incidir en parte de un indicador y no en su totalidad como ocurre con bastante frecuencia. Esto es así si nos ceñimos estrictamente a los indicadores que vienen dados en la Orden. Si, por el contrario, hubiera pretendido que  las tareas apuntaran siempre a la totalidad de lo descrito en los indicadores, al pie de la letra, se hubiera visto mermada mi libertad y creatividad en el diseño de actividades. Actuando con este último criterio, he constatado que se favorecería la homogeneidad de mi UDI con UDIs similares - sobre la misma temática-  realizadas por otros autores.)

  • ¿Estamos los/as profesores/as preparados para planificar la enseñanza-aprendizaje de esta manera tan rigurosa
  • ¿Hay una única forma de entender la planificación rigurosa?
  • ¿Se promociona la creatividad o la estandarización de productos?  
  • ¿Serán las editoriales quienes planifiquen por nosotros? 
  • ¿Qué relación guarda toda esta filosofía con la cultura de la performatividad en la educación?

21 abril, 2015

Material impreso para matemáticas del CEIP. Ignacio Halcón. Lebrija(Sevilla)

Desde hace ya más de una década mis colegas (excompañeros y amigos)  del CEIP. Ignacio Halcón de Lebrija (Sevilla) vienen diseñando sus propios materiales de matemáticas, que reprografían en color para su alumnado, como alternativa a los libros de texto. Dichos trabajos configuran su proyecto curricular de Matemáticas.

De una manera especial se incide en modelos de resolución de problemas. Si los enlazo aquí es porque comparto lo fundamental de su enfoque y porque los considero trabajos de calidad, de indudable interés y utilidad para maestros y maestras de Educación Primaria. Por otra parte, considero muy atractiva esta presentación de sus materiales subidos a Calaméo.

Trabajos de matemáticas del CEIP.  Ignacio Halcón. Lebrija (Sevilla)
(Haz clic sobre la imagen para acceder a los documentos)



12 abril, 2015

Adquisición de estrategias en técnicas de conteo.

Fuente: http://gmartinezor.wix.com/tecnicas-de-conteo
Fuente: http://gmartinezor.wix.com/tecnicas-de-conteo

Las imágenes anteriores, en las que se muestran alumnos/as colombianos/as utilizando aplicaciones digitales de didactmaticprimaria ( concretamente de "Laboratorio básico de Azar, Probabilidad y Combinatoria", 1º premio a materiales educativo del ITE_2010), corresponden al sitio web  http://gmartinezor.wix.com/tecnicas-de-conteo, en la que se ilustra la construcción de un objeto virtual de aprendizaje (OVA) para la adquisición de estrategias en técnica de conteo. Dicho OVA ha sido realizada por Germán Martínez Ortega, licenciado en matemática, como Trabajo de Tesis presentado  a la Facultad de Ciencias de la Universidad Nacional de Colombia como requisito parcial para optar al título de MAGISTER EN ENSEÑANZA DE CIENCIAS EXACTAS Y NATURALES, en Bogotá, D.C. Julio de 2013.

Germán Martínez Ortega contó con mi permiso para la realización de esta obra derivada de otras de mi autoría que forman el núcleo de las unidades didácticas que componen este OVA. También yo cuento con su agradecimiento: