21 junio, 2015

El tratamiento del cálculo en el currículo correspondiente a la Educación Primaria en Andalucía.¿Ambigüedad o contradicción?

La Orden de 17 de marzo de 2015 desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.

Me voy a centrar aquí exclusivamente en el área de Matemáticas, y más concretamente en el tratamiento del cálculo en dicha orden. 

En primer lugar observo que las cuestiones generales sobre el mismo vienen muy bien recogidas, de manera coherente y fundamentada didácticamente, tanto en la presentación del bloque 2 ("Números") como en las orientaciones metodológicas. Personalmente comparto la gran mayoría de estas indicaciones. Sin embargo, a medida que se relacionan los objetivos y contenidos con los criterios de evaluación y con los indicadores de éstos, percibo ciertas ambigüedades e incluso contradicciones que creo que no son producto de una incorrecta interpretación por mi parte.

He recogido en 10 puntos, y literalmente, las indicaciones más generales que sobre numeración, cálculo y resolución de problemas aritméticos escolares se expresan en esta orden :
  • (1) Se entiende la alfabetización numérica como “la capacidad para enfrentarse con éxito a situaciones en las que intervengan los números y sus relaciones”.
  • (2) Se entiende el desarrollo del significado numérico como “el dominio reflexivo de las relaciones numéricas  que se pueden expresar en capacidades como: habilidad para descomponer números de forma natural, comprender y utilizar la estructura del sistema de numeración decimal, utilizar las propiedades de las operaciones y las relaciones entre ellas para realizar cálculos mentales y razonados”.
  • (3) “Es importante resaltar que para lograr esta competencia no basta con dominar los algoritmos de cálculo escrito; se precisa también desarrollar estrategias de cálculo mental y aproximativo…” 
Aquí percibo cierta separación entre algoritmos de cálculo escrito y las estrategias de cálculo mental. Sin embargo esta separación no ha de ser necesariamente así, ni es lo más conveniente. Los algoritmos de cálculo escrito pueden apoyarse en las mismas propiedades de las operaciones básicas y en estrategias de cálculo similares a las del cálculo mental, solo que facilitándolas gradualmente con el apoyo que supone la expresión y visualización de los pasos intermedios registrados. 
  • (4) “Los números han de ser usados en diferentes contextos, sabiendo que la comprensión de los procesos desarrollados y el significado de los resultados es un contenido previo y prioritario, que va más allá de la mera destreza de cálculo”.
Comprensión y significado se priorizan sobre la mera destreza en el cálculo. Totalmente de acuerdo. Entiendo que la mera destreza en el cálculo hace alusión a la automatización de procedimientos de cálculo.
  • (5) “Interesa principalmente la habilidad para el cálculo con diferentes procedimientos y la decisión en cada caso sobre el que sea más adecuado. A lo largo de la etapa, se pretende que el alumnado calcule con fluidez y haga estimaciones razonables, tratando de lograr un equilibrio entre comprensión conceptual y competencia en el cálculo.”
Lo encuentro ambiguo puesto que anteriormente (4) se ha indicado que la comprensión conceptual es parte prioritaria de la competencia en el cálculo. Creo que se ha utilizado competencia en el cálculo como sinónimo de destreza en el cálculo lo cual contradice en cierta forma y empobrece la indicación dada en el punto 4.
  • (6) “La construcción de los distintos tipos de números a lo largo de las tres etapas y del sistema decimal como base de nuestro sistema de numeración, debe ser desarrollada de forma contextualizada buscando preferentemente situaciones cercanas a las niñas y niños, usando materiales manipulables específicos: regletas de Cuisenaire, bloques multibase, multicubos, etc. Dentro de este proceso de construcción se irán desarrollando, de forma paralela e interrelacionada, las operaciones aritméticas.”
  • (7) “Es conveniente que los alumnos y alumnas manejen con soltura las operaciones básicas con los diferentes tipos de números, tanto a través de algoritmos de lápiz y papel como con la calculadora. Asimismo, es importante que el alumnado utilice de manera racional estos procedimientos de cálculo, decidiendo cuál de ellos es el más adecuado a cada situación y desarrollando paralelamente el cálculo mental y razonado y la capacidad de estimación, lo que facilitará el control sobre los resultados y sobre los posibles errores en la resolución de problemas".
  • (8) “Los problemas aritméticos escolares no deben ser entendidos como un instrumento de comprobación del manejo de las operaciones elementales sino como un recurso fundamental para la comprensión de los conceptos de suma, resta, multiplicación y división. El alumno o la alumna sabrá sumar cuando se sea capaz de resolver una situación problemática en la que la suma sea la operación que deba usarse. Los problemas aritméticos se graduarán pasando de situaciones que se resuelven en una etapa a aquellas de dos o tres etapas.”
  • (9) “Los problemas aritméticos deberán tener en cuenta las diferentes categorías semánticas y graduarse en función de su dificultad”
  • (10) “Los números han de ser usados en diferentes contextos: juegos, situaciones familiares y personales, situaciones públicas, operando con ellos reiteradamente, sabiendo que la comprensión de los procesos desarrollados y del significado de los resultados es contenido previo y prioritario respecto a la propia destreza en el cálculo y la automatización operatoria.”
Totalmente de acuerdo. Se vuelve a repetir, reforzándolo, el punto 4  que luego se ve oscurecido o diluido en el punto 5.
Para 1º ciclo de Primaria se expresa el siguiente criterio de evaluación:
C.E.1.5. Realizar, en situaciones cotidianas, cálculos numéricos básicos con las operaciones de suma y resta aplicando sus propiedades, utilizando procedimientos mentales y algorítmicos diversos, la calculadora y estrategias personales.
Para este criterio, se expresan, entre otros, los siguientes indicadores:
MAT.1.5.1. Realiza operaciones de suma y resta con números naturales. Utiliza y automatiza sus algoritmos, aplicándolos en situaciones de su vida cotidiana y en la resolución de problemas. (CMCT).
MAT.1.5.2. Utiliza algunas estrategias sencillas de cálculo mental: sumas y restas de decenas y centenas exactas, redondeos de números, estimaciones del resultado por redondeo, cambiando los sumando si le es más fácil. (CMCT, CAA).
MAT.1.5.3. Aplica las propiedades de las operaciones y las relaciones entre ellas. (CMCT).
Nada que objetar si no fuera por la ambigüedad que supone la expresión de los siguientes contenidos para el bloque "Números".
2.16. Cálculo de sumas utilizando el algoritmo. 2.17. Cálculo de restas utilizando el algoritmo.
 ¿En qué quedamos?¿El algoritmo o algoritmos diversos?

El contenido siguiente, para 2º ciclo de Primaria, y el indicador MAT.2.5.1 parecen sacarnos de dudas (o sumirnos definitivamente en la duda y la contradicción):
2.18. Utilización de los algoritmos estándar de sumas, restas, multiplicación por dos cifras y división por una cifra, aplicándolos en su práctica diaria. Identificación y uso de los términos de las operaciones básicas.
MAT.2.5.1. Realiza operaciones utilizando los algoritmos estándar de suma, resta, multiplicación y división con distintos tipos de números, en comprobación de resultados en contextos de resolución de problemas y en situaciones cotidianas. (CMCT, CAA). 
¿Significa lo anterior que en primer ciclo se pueden utilizar algoritmos de lápiz y papel diversos y en segundo ciclo hay que cambiar a los algoritmos estándar?
No cabe duda sobre lo que se entiende por algoritmos estándar. Son los algoritmos tradicionales, los de toda la vida, los de nuestros tatarabuelos, los que utilizaron Menéndez Pelayo (1865) o Federico García Lorca (1908) en sus pruebas de reválida, como muy bien nos muestra Antonio R. Martín en "Los algoritmos tradicionales de las operaciones aritméticas:¡Han muerto, pero no han sido enterrados!"

¿Cómo es que después de un adecuado enfoque del cálculo, tanto en la presentación del bloque "Números" como en los objetivos del área, orientaciones metodológicas y criterios de evaluación aparecen luego, como sombras negras, sin fundamentación didáctica alguna, contenidos e indicadores que desdicen lo anterior?

¿Cómo se puede justificar esta ambigüedad o manifiesta contradicción? Admito, personalmente, que entre los algoritmos de lápiz y papel tengan cierta cabida, por su valor histórico y testimonial, los algoritmos estándar; pero defiendo que para cada una de las operaciones aritméticas existen diversos algoritmos de lápiz y papel mejor fundamentados que los algoritmos estándar y más adecuados para conseguir la competencia en el cálculo.


Ana María Juan. 3ºA. Curso 2014_2015. CEIP. Blas Infante. Lebrija (Sevilla)

Así divide Ana María J. y otros/as alumnos/as de 3º de Primaria de mi cole. Maneja los decimales pensando que está repartiendo una cantidad de euros entre un determinado número de personas. Expresa y entiende perfectamente un número decimal de euros (euros enteros más céntimos)... Evidentemente no se trata del algoritmo estándar de la división. Si bien ella no sabe resolver mentalmente y de manera exacta la división, sí sabe que el resultado debe ser algo menor que 10. Es obvio que en el algoritmo de lápiz y papel en el que se apoya hace uso de su grado actual de cálculo mental. Otros/as alumnos/as con menor grado de cálculo mental utilizarían cocientes intermedios más sencillos....No hay ruptura entre el procedimiento algorítmico escrito y el desarrollo de estrategias de cálculo mental.

¿Está esto en contra de las indicaciones sobre cálculo de la Orden citada al inicio? ¿No es posible desarrollar la competencia del cálculo al margen de los algoritmos estándar? ¿Son los algoritmos estándar los más apropiados para lograr competencia en el cálculo?

¿Qué intereses son los que mantienen a ultranza los algoritmos estándar de las operaciones básicas en el currículo de matemáticas de Primaria?


26 mayo, 2015

Reflexionando sobre la educación. Stephen Ball y Pierre Lévy

A modo de continuación con la última pregunta que planteo en la entrada anterior (¿Qué relación guarda toda esta filosofía con la cultura de la performatividad en la educación?) y para favorecer el conocimiento experto y la reflexión sobre esta temática, presento aquí una entrevista realizada a Stephen Ball.

Estandarización y docencia. Stephen Ball.




Me parece también muy interesante para la reflexión esta conferencia sobre "Inteligencia Colectiva para Educadores", de Pierre Lévy.


24 mayo, 2015

"Taller de Poliedros". Ejemplo de Unidad Didáctica Integrada.


Taller de poliedros. Ejemplo de Unidad Didáctica Integrada.

Ejemplo de UDI basada en el área de matemáticas diseñada para el 3º ciclo de Educación Primaria.
"Todo proceso de enseñanza-aprendizaje debe partir de una planificación rigurosa de lo que se pretende conseguir, teniendo claro cuáles son los objetivos o metas, qué recursos son necesarios, qué métodos didácticos son los más adecuados y cómo se evalúa el aprendizaje y se retroalimenta el proceso" (Orden de 17 de marzo de 2015, por la que se desarrolla el currículo correspondiente a la Educación Primaria en Andalucía.)

He querido con esta UDI ajustarme al modelo emergente de programación integrada que se propone en trabajos como el que sigue (sobre Integración de las Competencias Básicas en Andalucía) para experimentar las luces y las sombras de la "planificación rigurosa":


Como mi pensamiento es eminentemente práctico, planifico ante todo en forma de tareas y actividades. Estas, dada mi experiencia, son las que vienen primero a mi mente y no me resulta difícil estructurarlas de manera coherente y darles unidad. Las tareas que tenía en mente, previo a la realización de la UDI y antes de formularlas, se ajustaban perfectamente a las orientaciones metodológicas. Casi con esto me bastaba... Los demás elementos de planificación  no han tenido para mí tanto peso como las orientaciones metodológicas. No obstante, me han servido para ir y venir de las actividades y tareas a dichos elementos (objetivos, contenidos, criterios de evaluación,...), y viceversa, para así ampliar, suprimir y/o modificar actividades de manera que se ajustara la integración de los elementos curriculares de manera más coherente .

No me ha resultado fácil (ni en tiempo ni en esfuerzo y a pesar de mi gran experiencia en el tema) realizar la integración de los elementos, sobre todo porque  los formatos normales en que nos comunicamos por escrito son insuficientes, al menos para mí, para crear una tabla tal que integre de manera clara, atractiva y eficaz la totalidad de los elementos de planificación haciendo corresponder, además, unos con otros. Necesitaríamos, para ello, una "sábana" enorme que no resultaría nada práctica... Además, son tantos los elementos curriculares a integrar que continuamente he sentido la fragmentación de mi pensamiento "integrado", la sensación de tener que encajar sobre el papel numerosas piezas de un puzle que yo ya sé encajar en mi pensamiento y desarrollar en mi desempeño profesional docente...

Así, por ejemplo, he incluido los indicadores (INDICADORES CORRESPONDIENTES A LOS CRITERIOS DE EVALUACIÓN del grado de adquisición de las Competencias Básicas - que son concreción y secuenciación de los estándares de aprendizaje evaluables) sin hacerlos corresponder con las actividades sino con las tareas, dado que son muchas las actividades propuestas y hay indicadores que se repiten. ¿Qué hacer con los indicadores que se repiten en determinadas tareas? ¿Repetirlos en los documentos de planificación? ¿Marcarlos como especialmente relevantes?  Otro motivo por el que presento los indicadores por tareas es la constatación de una dificultad añadida: una determinada actividad puede incidir en parte de un indicador y no en su totalidad como ocurre con bastante frecuencia. Esto es así si nos ceñimos estrictamente a los indicadores que vienen dados en la Orden. Si, por el contrario, hubiera pretendido que  las tareas apuntaran siempre a la totalidad de lo descrito en los indicadores, al pie de la letra, se hubiera visto mermada mi libertad y creatividad en el diseño de actividades. Actuando con este último criterio, he constatado que se favorecería la homogeneidad de mi UDI con UDIs similares - sobre la misma temática-  realizadas por otros autores.)

  • ¿Estamos los/as profesores/as preparados para planificar la enseñanza-aprendizaje de esta manera tan rigurosa
  • ¿Hay una única forma de entender la planificación rigurosa?
  • ¿Se promociona la creatividad o la estandarización de productos?  
  • ¿Serán las editoriales quienes planifiquen por nosotros? 
  • ¿Qué relación guarda toda esta filosofía con la cultura de la performatividad en la educación?

21 abril, 2015

Material impreso para matemáticas del CEIP. Ignacio Halcón. Lebrija(Sevilla)

Desde hace ya más de una década mis colegas (excompañeros y amigos)  del CEIP. Ignacio Halcón de Lebrija (Sevilla) vienen diseñando sus propios materiales de matemáticas, que reprografían en color para su alumnado, como alternativa a los libros de texto. Dichos trabajos configuran su proyecto curricular de Matemáticas.

De una manera especial se incide en modelos de resolución de problemas. Si los enlazo aquí es porque comparto lo fundamental de su enfoque y porque los considero trabajos de calidad, de indudable interés y utilidad para maestros y maestras de Educación Primaria. Por otra parte, considero muy atractiva esta presentación de sus materiales subidos a Calaméo.

Trabajos de matemáticas del CEIP.  Ignacio Halcón. Lebrija (Sevilla)
(Haz clic sobre la imagen para acceder a los documentos)



12 abril, 2015

Adquisición de estrategias en técnicas de conteo.

Fuente: http://gmartinezor.wix.com/tecnicas-de-conteo
Fuente: http://gmartinezor.wix.com/tecnicas-de-conteo

Las imágenes anteriores, en las que se muestran alumnos/as colombianos/as utilizando aplicaciones digitales de didactmaticprimaria ( concretamente de "Laboratorio básico de Azar, Probabilidad y Combinatoria", 1º premio a materiales educativo del ITE_2010), corresponden al sitio web  http://gmartinezor.wix.com/tecnicas-de-conteo, en la que se ilustra la construcción de un objeto virtual de aprendizaje (OVA) para la adquisición de estrategias en técnica de conteo. Dicho OVA ha sido realizada por Germán Martínez Ortega, licenciado en matemática, como Trabajo de Tesis presentado  a la Facultad de Ciencias de la Universidad Nacional de Colombia como requisito parcial para optar al título de MAGISTER EN ENSEÑANZA DE CIENCIAS EXACTAS Y NATURALES, en Bogotá, D.C. Julio de 2013.

Germán Martínez Ortega contó con mi permiso para la realización de esta obra derivada de otras de mi autoría que forman el núcleo de las unidades didácticas que componen este OVA. También yo cuento con su agradecimiento:






18 enero, 2015

El gran error en la enseñanza de matemáticas, según J.A. Fernández Bravo.

El día 8 de enero, El Confidencial publicó un artículo titulado "Uno de nuestros mejores profesores señala el gran error en la enseñanza de matemáticas", en el que José Antonio Fernández Bravo, decano de la Facultad de Ciencias Sociales y de la Educación de la Universidad Camilo José Cela, analiza los errores fundamentales que se dan en la enseñanza de las matemáticas a la vez que propone ocho ideas para mejorarla...

José Antonio Fernández Bravo. Fuente: El Confidencial.
José Antonio Fernández Bravo. Fuente: El Confidencial.
"...Quizás no interese que se genere pensamiento, que se genere autonomía, observación y crítica en el ciudadano. Quizás sea todo una pantomima y un disfraz con un telón de fondo en el que dice ‘no me interesa que pienses’, porque hoy ya se sabe cómo se puede generar pensamiento”.
La sexta idea, que me interesa especialmente, se recoge así en este artículo:

6. La tecnología debe ser un medio, nunca un fin.
“Las nuevas tecnologías mal utilizadas están evitando la manipulación de materiales, el entendimiento y la comprensión”, asegura Fernández Bravo con rotundidad. ¿Qué estamos haciendo con las nuevas tecnologías? Según el decano, “sustituir el papel impreso del libro por la misma imagen no trabajada del libro que se ve en la pizarra digital. Se puede enseñar mejor con dos palos y tres piedras que con las modernidades más grandes, porque en definitiva no hay avance mientras no haya mejores resultados con menos esfuerzo”.
Entiendo perfectamente lo que quiere decir J.A. Fernández Bravo, y pienso que es cierto en gran medida, pero tal vez lo haya expresado de forma muy  general y rotunda sin contemplar, como excepción, el loable y muy poco apoyado esfuerzo que bastantes docentes, convertidos también en desarrolladores de software educativo, estamos realizando en este sentido movidos por el "Principio de la Tecnología" en la educación matemática. Una minoría de docentes, por lo general silenciosa y silenciada, que tiene que hacer "juegos malabares" para integrar equilibradamente conocimientos curriculares, conocimientos didáctico-pedagógicos y conocimientos tecnológicos para conseguir aplicaciones TIC que vayan más allá del libro de texto y que favorezcan un uso constructivo y no instructivo de las TICs; desarrollando materiales didácticos digitales que concreten e ilustren el tratamiento de resultados ampliamente admitidos por la Didáctica de la Matemática; desarrollando materiales digitales eficaces, a pie de aula, para el tratamiento de la diversidad, el aprendizaje autónomo o semidirigido y por descubrimiento; materiales que reduzcan el esfuerzo de profesores y alumnos a la vez que faciliten un mejor tratamiento tanto de los principios internacionalmente admitidos para la educación matemática como de aspectos relevantes del currículo de esta área; aplicaciones digitales enfocadas a hacer realidad una matemática intuitiva, dinámica, interactiva... así como al logro de mayor competencia matemática...Materiales didácticos virtuales que también demandarán su derecho a formar parte de la historia de las materiales educativos para la enseñanza-aprendizaje de la matemática y que no están ya en la esfera del "esto es lo que se debe hacer" (más teórica y especulativa) sino en la del  "esto es lo que yo he hecho", que permite avanzar realmente mediante el análisis y mejoras evidentes de lo existente...

Me voy a permitir aquí añadir, a las ocho mencionadas por J.A. F. Bravo, una idea más para la mejora de la enseñanza de las matemáticas:

9. La formación del profesorado debe corregir el actual desequilibrio entre teoría y práctica.
Creo que los hábitos asociados a la economía especulativa (en su acepción de fraude) propia de los tiempos en que vivimos han influenciado nuestra manera de aceptar, entender y afrontar todos los ámbitos de lo social. Se pone más en valor la apariencia que la esencia. Son las "autoridades", en todos los ámbitos de lo social, quienes crean "las verdades" y no "las verdades" las que se constituyen en "autoridades". 

En el ámbito de la formación del profesorado también hemos asistido a un exceso de especulación (en su acepción de teoría, reflexión) en tanto en cuanto muchas acciones formativas (también demasiadas "investigaciones" y tesis) se dan en forma de "paquetes teóricos" justificados y avalados por el prestigio (+ influencia + marketing) de los ponentes y armados de manera coherente pero que no necesariamente tienen un fin práctico (a pesar de que siempre se puedan dirigir justificadamente hacia la mejora de la calidad de la enseñanza) ni tienen que ser contrastados en la realidad (o no tiene sentido hacerlo debido al número de variables de que depende)... Siendo la reflexión teórica sobre la enseñanza-aprendizaje algo muy necesario, creo firmemente que es más necesario corregir el desequilibrio entre la teoría y la práctica educativa. La formación del profesorado en matemáticas debe dar más peso al análisis crítico, a pie de aula, de "variables educativas relevantes", a través del contraste de opiniones, del estudio de actuaciones y producciones concretas del profesorado...


07 enero, 2015

Regletas de Cuisenaire. Versión digital.

Son muchos los vídeos , documentos teóricos y prácticos ("Trabajamos con las Regletas") que ilustran el interés y potencial didáctico de los "Números en color" de Cuisenaire, y relativamente numerosas las versiones digitales que se han hecho de las regletas.

He sido reticente durante años a realizar una versión digital de las regletas de Cuisenaire, sobre todo porque ya existían otras versiones. Curiosamente, todas las versiones que he encontrado, en las que las regletas se pueden desplazar, se basan en la representación plana de las mismas. No sé si esto se ha hecho así intencionadamente por parte de los desarrolladores, en atención a características psicológicas específicas de las edades de los alumnos a los que se destinan, o bien para eludir las dificultades técnicas añadidas que conlleva la representación tridimensional. Me temo que esto último ha tenido más peso en el diseño... Personalmente, yo sólo encuentro ventajas en la representación tridimensional de las regletas. Ésta ha sido una de las principales razones que me ha motivado a realizar esta aplicación, al constatar que existía espacio para la innovación y la mejora…

Me voy a centrar aquí exclusivamente en un análisis somero y crítico de estas versiones digitales desde el respeto y la consideración que merecen sus autores. Con el enfoque implementado en mi trabajo  “Evaluación de Contenidos Educativos Digitales Multimedia _ Matemáticas (CEDMMat)”, todas ellas pueden ser analizadas a la luz del modelo TPACK, es decir, desde el punto de vista de los diferentes grados de intersección o integración, logrados por los desarrolladores de estas versiones digitales, entre tecnología, didáctica-pedagogía y contenidos para asegurar una implementación exitosa de las TIC, entendiendo y aceptando que La tecnología optimiza (o puede optimizar) los procesos de enseñanza-aprendizaje con una compleja interconexión de tecnología, contenidos y pedagogía.

No descubro nada al afirmar que las regletas de Cuisenaire son un excelente material didáctico para la enseñanza-aprendizaje de las matemáticas, o al afirmar que se trata de un material polivalente. En el ámbito de las versiones digitales esto ha sido muy bien recogido en la aplicación “regletas”, de José Antonio Cuadrado. Se trata de una aplicación muy completa en este sentido. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo….

La mayoría de los desarrolladores ha optado por realizar versiones elementales que contemplan exclusivamente la manipulación libre permitiendo obtener y colocar copias en pantalla, una a una, de las diferentes regletas. Éstas pueden presentar dos orientaciones: horizontal y vertical. Generalmente se contempla la atracción o ajuste a una cuadrícula (visible o invisible) para facilitar la colocación y exactitud en la composición realizada. He aquí algunas aplicaciones con las características descritas, todas ellas muy parecidas entre sí:

  • La versión digital desarrollada por Ángel Martínez Recio (Universidad de Córdoba. España) tiene un diseño excesivamente elemental. La manipulación resulta poco atractiva al utilizar regletas muy pequeñas y muy pocas opciones de configuración. Resulta una aplicación pobre atendiendo a aspectos multimedia y a su interactividad.
  • Algo análogo se puede decir de "Regletas de Cuisenaire con Geogebra" realizada por José Manuel Infante. Ni tan siquiera permite clonar regletas. Y es que Geogebra es un muy buen software pero resulta muy limitado cuando se pretende utilizarlo como Flash...
  • La versión digital de NRICH enriching mathematics facilita el giro de las regletas pero hay que elegir siempre regleta antes de colocarla. Al igual que la anterior, no facilita el clonado de regletas del mismo valor y tiene muy pocas opciones de configuración.
  • http://www.escolovar.org/mat_numero_cuisenaire1.swf. Prácticamente igual a las anteriores.
  • NumBlox, de Math Toybox. Con respecto a las anteriores, añade la posibilidad de escribir en pantalla.
  • De la aplicación Mathbars, de MathPlaygroundhe tomado el modo de elegir el valor de la regleta.
  • En un nivel básico de diseño se encuentra también la versión para JClic  realizada por Miren GarraldaEs también muy limitado su potencial didáctico-pedagógico. Se centra en la asociación regleta color - número simbólico, ordenar de menor a mayor, sumar1, descomposiciones alternativas de números sencillos…Todo ello de manera cerrada sin posibilidad de que los niños manipulen con las regletas.
  • La versión de learningmath aporta modo libre y propone, además, algunos problemas. Facilita el clonado de regletas del mismo valor, por simple pulsación, y su colocación en la pantalla de trabajo. Representa un avance con respecto a las anteriores.

En otro nivel más avanzado de diseño nos encontramos con aplicaciones tales como:
  • El Proyecto Medusa ofrece “Los números que suman 10” y “Las sumas dobles”. La primera es bastante mejor desde el punto de vista del diseño multimedia que desde el punto de vista de su potencial didáctico-pedagógico. Considero que se ha realizado un gran esfuerzo para el tratamiento de un contenido muy específico y reducido a través de una propuesta excesivamente cerrada, dirigida y convergente, sin contemplar la manipulación libre….La segunda aplicación comparte características con la primera. Presenta regletas  tridimensionales pero sin la posibilidad de que el alumno realice acciones con ellas. Se utilizan para ilustrar la fase gráfica previa a la realización de actividades simbólicas (con números y signos) que son el verdadero objetivo de la aplicación.
  • Vedoque nos ofrece una versión digital de las regletas con una manipulación no demasiado ágil debido a que no facilita el clonado de piezas del mismo valor y porque las piezas, mientras se desplazan, se ajustan a la cuadrícula. Eso causa el efecto de un desplazamiento discontinuo. Además de la manipulación libre, ofrece 20 interesantes puzles planos. Las regletas nunca presentan el símbolo numérico correspondiente a su valor ni las divisiones en regletas unitarias (blancas), aunque sí se facilita el recuento de unidades de cada una de ellas.
  • Las muy conocidas regletas realizadas por  Gil Gijón Canal, David Cantos Vila y Maximina Fernández Orviz son una aplicación muy completa y elaborada. Muy equilibrada en sus aspectos téncicos y didáctico-pedagógicos. Como única pega, encuentro que, en modo jugar,  propone actividades de completar con valores numéricos que necesitan hacer uso del teclado, con lo que no se adaptan a la pizarra digital al requerir un teclado auxiliar. En este modo, la manipulación no resulta ágil debido a que no facilita el clonado de piezas del mismo valor.
  • Como ya indiqué anteriormente, las regletas de José Antonio Cuadrado son una aplicación muy completa. Ilustra cómo pueden utilizarse las regletas para trabajar múltiples conceptos, dada la polivalencia del material. Ha cuidado mucho las explicaciones, mediante vídeos. Quizá haya descuidado aspectos como la manipulación libre, ya que no se pueden borrar regletas colocadas, no se ha contemplado la atracción a la cuadrícula y las regletas de las cuales se extraen copias ocupan demasiado espacio de la pantalla de trabajo…

Encontramos, también, interpretaciones más libres de las regletas y otras aplicaciones derivadas:
  • La versión de la National Library of Virtual Manipulatives, Utah State University es más libre dado que no “respeta” la correspondencia color-longitud propia de las regletas Cuisenaire. Aunque contempla sólo la manipulación libre, permite clonar regletas numéricas de un determinado valor con mucha facilidad…
  • MultipleRepresentations utiliza la regleta unidad y la decena entre otros tipos de representaciones…
  • Fraction bars no utliza las regletas Cuisenaire pero sí “fraction bars” para trabajar las fracciones de una manera muy ágil y eficaz. Si la relaciono aquí es como pretexto para afirmar que aunque las regletas Cuisenaire sean muy polivalentes y permitan ilustrar numerosos conceptos, conviene utilizar, también, diferentes materiales para ilustrar-modelar un mismo concepto. Sería tremendamente aburrido, y poco creativo, utilizar las regletas para todas aquellas situaciones en que resultan adecuadas. 
........................................................................................................

He desarrollado la aplicación "Regletas de Cuisenaire" que ofrezco en este post teniendo en cuenta las virtudes y defectos, a mi juicio, de las anteriormente relacionadas. He pretendido en todo momento hacer rica la configuración de posibilidades en cada uno de sus modos de funcionamiento. He considerado prioritario enriquecer las posibilidades en el modo manipulación libre, favorecer el descubrimiento a través de una manipulación que resulte ágil y atractiva facilitando enormemente el clonado de regletas del mismo valor...

El cubo como unidad de diseño tridimensional ya lo había utilizado anteriormente en otras aplicaciones tales como ortoedroGeneración y codificación de policubos por capas,... La utilización del cubo unitario y de la regleta decena en bloques base 10 también son precedentes de esta aplicación. De análoga manera, he utilizado regletas (sin respetar los valores y colores de las de Cuisenaire) en varias aplicaciones que he realizado sobre fracciones.

Invito a los lectores a que descubran el potencial de esta aplicación y a que me hagan llegar las sugerencias que estimen oportunas.


15 noviembre, 2014

Resolución de PAEV en el CEIP. Serafina Andrades.

Agradezco a Teresa Simonet, directora del CEIP. Serafina Andrades, de Chiclana de la Frontera, el envío de estas imágenes. Ilustran una forma concreta, ideada por Fran Rodriguez, de abordar la resolución de PAEV (Problemas Aritméticos Escolares Verbalizados) siguiendo el metamodelo de resolución que pone el énfasis en hacer explícita la estructura del problema a dos niveles: el del PROCESAMIENTO LINGÜÍSTICO (que lleva a la expresión prealgebraica de la igualdad directriz del problema) y el del PROCESAMIENTO MATEMÁTICO (que traduce la anterior en forma de expresión algebraica que es la solución del problema). De esta manera se hacen especialmente patentes en el contexto de RP las interrelaciones entre competencias lingüísticas y matemáticas.

Se trata de un material que complementa a las aplicaciones TIC de DIDACTMATICPRIMARIA que inciden de manera interactiva sobre este modelo. 

Coincidiendo, según me dice Teresa, con una semana que no tuvieron conectividad a Internet, Fran Rodríguez se puso a implementar el modelo con etiquetas de texto recortables para sus alumnos/as de 5º. También lo van a llevar a cabo en 3º y 4º. 
Desde aquí, mis felicitaciones.

23 octubre, 2014

Aritmética mental básica. Problemitas y retos a partir de Educación Infantil.

Algunas de las aplicaciones que se ofrecen a continuación se incluían ya en Didáctica de la Suma y Resta. Formarán parte, a su vez, de un conjunto de aplicaciones para 2º ciclo de Educación Infantil y primer ciclo de Educación Primaria con las que se completará y mejorará Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI.

16 octubre, 2014

Bloques base 10. SND, suma y resta.

Hace ya casi un año que mi estimado colega Pepe Vidal  (de la Sociedad Canaria de Profesores de Matemáticas Isaac Newton) me manifestó que echaba en falta, entre todas mis aplicaciones, alguna dedicada a la suma/resta con bloques base 10...Y me animaba para que la desarrollara...

Tengo que confesar que sentía cierta pereza a hacerlo, previendo las dificultades, con el código de programación, con que me iba a encontrar. Bueno, por fin la he desarrollado y tengo que decir que me satisface el resultado final. 

Dado que en las escenas correspondientes a la suma y a la resta se ofrece un registro interactivo de los pasos realizados ( paso a paso o de manera simplificada) que no es sino un algoritmo natural y flexible para realizar la operación, puede que en un futuro la amplíe con la práctica de dichos algoritmos (ya en la fase puramente simbólica) puestos de manifiesto con la manipulación.

(Aplicación ampliada con fecha 29-10-2014)



(Ver a pantalla completa)

He decidido no incluir escenas dedicadas a la multiplicación y la división porque tendrían que reducirse forzosamente a casos muy concretos y sencillos (doble, triple,...división entre 2, 3, 4...) que no suponen una suficiente generalización,  obligando, además,  a reducir progresivamente el tamaño de los elementos móviles hasta hacerlo poco estético y operativo... Además, el hecho de que un mismo material sirva para ilustrar diferentes conceptos no significa que sea el más idóneo, ni el único, para ilustrar esos conceptos. Es conveniente ilustrar un mismo concepto con materiales diferentes. No obstante, a continuación ofrezco unos enlaces a vídeos en los que se ejemplifica el cálculo del doble, el reparto entre 3, etc...







En los siguientes vídeos ,y en otros de arriba, se afirma o se da por sentado que en la resta (por detracción, o por comparación) hay que comenzar a "quitar siempre por las unidades". Se trata de una afirmación general que es contraria a la didáctica de la aritmética mental basada en números en la que las operaciones se realizan de izquierda a derecha poniendo de manifiesto de manera más rápida y clara un valor aproximado de la solución. Así, por ejemplo, 435 - 248 = 235 - 48 (hemos quitado 2 centenas tanto al minuendo como al sustraendo y ya se aprecia que la solución va a ser un valor en torno a 200) = 205 - 18 (hemos quitado 3 decenas tanto al minuendo como al sustraendo) = 200 - 13 = 197 - 10 = 187. 

Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.




La siguiente presentación, de josealqueria, recoge perfectamente las estrategias de cálculo ligadas a la suma y resta.




Os invito a consultar  "Material didáctico analógico vs material didáctico digital" un post de este blog, de 2011.




27 septiembre, 2014

La noción de currículo y su significado en las matemáticas escolares, según Luis Rico.

Vídeos de IBERCIENCIA
Luis Rico Romero. Universidad de Granada
La noción de currículo y su significado en las matemáticas escolares. 

La noción de currículo y su significado en las matemáticas escolares. Funciones y estructura del currículo de matemáticas. Debate social y debate académico sobre la innovación y el cambio en el currículo de matemáticas. Finalidades en distintas etapas de la evolución de las matemáticas escolares. Cambios conceptuales y base cognitiva del conocimiento matemático. Matemáticas funcionales y alfabetización escolar. Diversidad de opciones y limitaciones en el trabajo con las evaluaciones terminales escolares: campo de estudio y desarrollo.





Luis Rico: Evaluación de la alfabetización matemática escolar


18 septiembre, 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)

17 septiembre, 2014

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!

19 agosto, 2014

DidácTICa de la suma y resta

No voy a hacer comentarios a esta ¿presentación interactiva? ¿libro interactivo?. Creo que es algo más que eso. De cualquier manera pueden juzgarlo los/as lectores/as. Agradeceré y publicaré cualquier comentario al respecto.

03 junio, 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)