15 noviembre, 2014

Resolución de PAEV en el CEIP. Serafina Andrades.

Agradezco a Teresa Simonet, directora del CEIP. Serafina Andrades, de Chiclana de la Frontera, el envío de estas imágenes. Ilustran una forma concreta, ideada por Fran Rodriguez, de abordar la resolución de PAEV (Problemas Aritméticos Escolares Verbalizados) siguiendo el metamodelo de resolución que pone el énfasis en hacer explícita la estructura del problema a dos niveles: el del PROCESAMIENTO LINGÜÍSTICO (que lleva a la expresión prealgebraica de la igualdad directriz del problema) y el del PROCESAMIENTO MATEMÁTICO (que traduce la anterior en forma de expresión algebraica que es la solución del problema). De esta manera se hacen especialmente patentes en el contexto de RP las interrelaciones entre competencias lingüísticas y matemáticas.

Se trata de un material que complementa a las aplicaciones TIC de DIDACTMATICPRIMARIA que inciden de manera interactiva sobre este modelo. 

Coincidiendo, según me dice Teresa, con una semana que no tuvieron conectividad a Internet, Fran Rodríguez se puso a implementar el modelo con etiquetas de texto recortables para sus alumnos/as de 5º. También lo van a llevar a cabo en 3º y 4º. 
Desde aquí, mis felicitaciones.

23 octubre, 2014

Aritmética mental básica. Problemitas y retos a partir de Educación Infantil.

Algunas de las aplicaciones que se ofrecen a continuación se incluían ya en Didáctica de la Suma y Resta. Formarán parte, a su vez, de un conjunto de aplicaciones para 2º ciclo de Educación Infantil y primer ciclo de Educación Primaria con las que se completará y mejorará Taller de Resolución de Problemas Aritméticos Escolares (PAEV y PANV) para PDI.

16 octubre, 2014

Bloques base 10. SND, suma y resta.





Hace ya casi un año que mi estimado colega Pepe Vidal  (de la Sociedad Canaria de Profesores de Matemáticas Isaac Newton) me manifestó que echaba en falta, entre todas mis aplicaciones, alguna dedicada a la suma/resta con bloques base 10...Y me animaba para que la desarrollara...

Tengo que confesar que sentía cierta pereza a hacerlo, previendo las dificultades, con el código de programación, con que me iba a encontrar. Bueno, por fin la he desarrollado y tengo que decir que me satisface el resultado final. 

Dado que en las escenas correspondientes a la suma y a la resta se ofrece un registro interactivo de los pasos realizados ( paso a paso o de manera simplificada) que no es sino un algoritmo natural y flexible para realizar la operación, puede que en un futuro la amplíe con la práctica de dichos algoritmos (ya en la fase puramente simbólica) puestos de manifiesto con la manipulación.

(Aplicación ampliada con fecha 29-10-2014)



He decidido no incluir escenas dedicadas a la multiplicación y la división porque tendrían que reducirse forzosamente a casos muy concretos y sencillos (doble, triple,...división entre 2, 3, 4...) que no suponen una suficiente generalización,  obligando, además,  a reducir progresivamente el tamaño de los elementos móviles hasta hacerlo poco estético y operativo... Además, el hecho de que un mismo material sirva para ilustrar diferentes conceptos no significa que sea el más idóneo, ni el único, para ilustrar esos conceptos. Es conveniente ilustrar un mismo concepto con materiales diferentes. No obstante, a continuación ofrezco unos enlaces a vídeos en los que se ejemplifica el cálculo del doble, el reparto entre 3, etc...







En los siguientes vídeos ,y en otros de arriba, se afirma o se da por sentado que en la resta (por detracción, o por comparación) hay que comenzar a "quitar siempre por las unidades". Se trata de una afirmación general que es contraria a la didáctica de la aritmética mental basada en números en la que las operaciones se realizan de izquierda a derecha poniendo de manifiesto de manera más rápida y clara un valor aproximado de la solución. Así, por ejemplo, 435 - 248 = 235 - 48 (hemos quitado 2 centenas tanto al minuendo como al sustraendo y ya se aprecia que la solución va a ser un valor en torno a 200) = 205 - 18 (hemos quitado 3 decenas tanto al minuendo como al sustraendo) = 200 - 13 = 197 - 10 = 187. 

Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.




En los siguientes documentos, de Jesús Javier Jiménez y Teodoro Yupa, respectivamente, se teoriza y se ilustran  un buen número de estrategias de cálculo mental.



03 octubre, 2014

Multiplicación basada en números



Esta macroaplicación, realizada en Flash, presenta fallos de compatibilidad al ser presentada actualmente mediante Ruffle. Dado que son tantas las aplicaciones diferentes que se enlazan en ella y dado que actualmente las mismas están perfectamente adaptadas, mejoradas e  integradas en otras aplicaciones dentro del proyecto MATE.TIC.TAC, he decidido que no merece la pena gastar esfuerzos en actualizarla. De cualquier manera, puede dar una buena idea de lo que publiqué en su momento.
                                       (Juan García Moreno, marzo-2022)

27 septiembre, 2014

La noción de currículo y su significado en las matemáticas escolares, según Luis Rico.

Vídeos de IBERCIENCIA
Luis Rico Romero. Universidad de Granada
La noción de currículo y su significado en las matemáticas escolares. 

La noción de currículo y su significado en las matemáticas escolares. Funciones y estructura del currículo de matemáticas. Debate social y debate académico sobre la innovación y el cambio en el currículo de matemáticas. Finalidades en distintas etapas de la evolución de las matemáticas escolares. Cambios conceptuales y base cognitiva del conocimiento matemático. Matemáticas funcionales y alfabetización escolar. Diversidad de opciones y limitaciones en el trabajo con las evaluaciones terminales escolares: campo de estudio y desarrollo.





Luis Rico: Evaluación de la alfabetización matemática escolar


18 septiembre, 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)

17 septiembre, 2014

Sentido Numérico y mucho más.

Muy relacionado con el contenido del post anterior,  os ofrezco aquí el libro de Silvia García (México), titulado Sentido Numérico que me remite vía e-mail Antonio Martín (Tony). 


Antonio Martín (Tony)


Aprovecho aquí, también, para ofrecer la dirección del canal de Youtube de Antonio Martín (Antonio Martín 2020) en el que, a través de más de 60 vídeos, explica cómo trabajar con los distintos materiales didácticos: regletas, tangram, calculadora, geoplano,... (un material muy valioso)

¡Gracias, Tony!

19 agosto, 2014

DidácTICa de la suma y resta

No voy a hacer comentarios a esta ¿presentación interactiva? ¿libro interactivo?. Creo que es algo más que eso. De cualquier manera pueden juzgarlo los/as lectores/as. Agradeceré y publicaré cualquier comentario al respecto.


Esta macroaplicación, realizada en Flash, presenta fallos de compatibilidad al ser presentada actualmente mediante Ruffle. Dado que son tantas las aplicaciones diferentes que se enlazan en ella y dado que actualmente las mismas están perfectamente adaptadas, mejoradas e  integradas en otras aplicaciones dentro del proyecto MATE.TIC.TAC, he decidido que no merece la pena gastar esfuerzos en actualizarla. De cualquier manera, puede dar una buena idea de lo que publiqué en su momento.
                                                    (Juan García Moreno, marzo-2022)

Para compensar esto, ofrezco a continuación otra macroaplicación sobre  LA RESTA "QUITANDO" Y "COMPLETANDO".

03 junio, 2014

Intuición probabilística

En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su acepción frecuencial. La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios. Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. 

A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).

La experimentación y la simulación son las vías más adecuadas para pasar de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza). 

En Educación Primaria se trata fundamentalmente de desarrollar una “intuición probabilística” lo más ajustada posible. Los métodos de asignación probabilística serán, fundamentalmente, la estadística de la ocurrencia de los sucesos a estudio y el contraste antes y después de la experimentación. Todos los niños tienen, en mayor o menor medida, una opinión a priori desde edades muy tempranas, y en todas las culturas, de lo posible aunque indeterminado (intuición del azar). El objetivo global en esta etapa se centra en ajustar estos dos modos de asignación probabilística. 

Pero, pongamos a prueba nuestra intuición probabilística. La siguiente aplicación se puede configurar para extraer 1, 2, 3, 4 ó 5 bolas en cada extracción ( que luego son devueltas a la urna). Permite variar el número total de bolas en el interior de la urna, el número de bolas de cada color (entre tres colores posibles), el número asignado a cada bola, etc... Además, permite realizar extracciones de una en una o automáticas (sin parar, tantas como se desee). Es ideal para obtener las probabilidades empíricas de múltiples sucesos compuestos...

Invito al lector a realizar un sencillo experimento aleatorio, a que configure la aplicación con 4 bolas en el interior de la urna (dos bolas verdes y dos azules, por ejemplo) numeradas con 1, 2, 3 y 4 respectivamente. A que realice, de manera automática, tantas extracciones de 2 bolas con reposición como desee... ( mínimo 40 ó 50 extracciones). Pero, antes de comenzar con las extracciones automáticas, formule su hipótesis sobre el resultado del experimento en el que vamos a considerar las probabilidades de dos sucesos complementarios: que las dos bolas extraídas tengan el mismo color o que tengan color diferente...


Este applet desagregado forma parte de mi propuesta "Laboratorio Básico de Azar, Probabilidad y Combinatoria"  (1º Premio a MATERIALES EDUCATIVOS_2010. ITE). Macroaplicación en la que se aborda de manera EXPERIMENTAL el paso de las intuiciones sobre el azar y la probabilidad al razonamiento probabilístico a través de una aproximación frecuencial a la probabilidad. Se apoya en la realización de atractivos experimentos aleatorios.
(Ver a pantalla completa)