Hace ya casi un año que mi estimado colega Pepe Vidal (de la Sociedad Canaria de Profesores de Matemáticas Isaac Newton) me manifestó que echaba en falta, entre todas mis aplicaciones, alguna dedicada a la suma/resta con bloques base 10...Y me animaba para que la desarrollara...
Tengo que confesar que sentía cierta pereza a hacerlo, previendo las dificultades, con el código de programación, con que me iba a encontrar. Bueno, por fin la he desarrollado y tengo que decir que me satisface el resultado final.
Dado que en las escenas correspondientes a la suma y a la resta se ofrece un registro interactivo de los pasos realizados ( paso a paso o de manera simplificada) que no es sino un algoritmo natural y flexible para realizar la operación, puede que en un futuro la amplíe con la práctica de dichos algoritmos (ya en la fase puramente simbólica) puestos de manifiesto con la manipulación.
(Aplicación ampliada con fecha 29-10-2014)
He decidido no incluir escenas dedicadas a la multiplicación y la división porque tendrían que reducirse forzosamente a casos muy concretos y sencillos (doble, triple,...división entre 2, 3, 4...) que no suponen una suficiente generalización, obligando, además, a reducir progresivamente el tamaño de los elementos móviles hasta hacerlo poco estético y operativo... Además, el hecho de que un mismo material sirva para ilustrar diferentes conceptos no significa que sea el más idóneo, ni el único, para ilustrar esos conceptos. Es conveniente ilustrar un mismo concepto con materiales diferentes. No obstante, a continuación ofrezco unos enlaces a vídeos en los que se ejemplifica el cálculo del doble, el reparto entre 3, etc...
En los siguientes documentos, de Jesús Javier Jiménez y Teodoro Yupa, respectivamente, se teoriza y se ilustran un buen número de estrategias de cálculo mental.
En los siguientes vídeos ,y en otros de arriba, se afirma o se da por sentado que en la resta (por detracción, o por comparación) hay que comenzar a "quitar siempre por las unidades". Se trata de una afirmación general que es contraria a la didáctica de la aritmética mental basada en números en la que las operaciones se realizan de izquierda a derecha poniendo de manifiesto de manera más rápida y clara un valor aproximado de la solución. Así, por ejemplo, 435 - 248 = 235 - 48 (hemos quitado 2 centenas tanto al minuendo como al sustraendo y ya se aprecia que la solución va a ser un valor en torno a 200) = 205 - 18 (hemos quitado 3 decenas tanto al minuendo como al sustraendo) = 200 - 13 = 197 - 10 = 187.
Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.
Esto se pone de manifiesto perfectamente cuando representamos con los bloques tanto el minuendo como el sustraendo. Y sigue siendo perfectamente válido cuando partimos únicamente de la representación del minuendo y detraemos "por partes" el sustraendo.
En los siguientes documentos, de Jesús Javier Jiménez y Teodoro Yupa, respectivamente, se teoriza y se ilustran un buen número de estrategias de cálculo mental.