Pulsar sobre la imagen para acceder a la versión online)
INVESTIGACIÓN Y DESARROLLO de CONTENIDOS EDUCATIVOS DIGITALES MULTIMEDIA para la enseñanza-aprendizaje de las MATEMÁTICAS (Infantil-PRIMARIA y atención a la diversidad en ESO) y LENGUA en PRIMARIA. Por una enseñanza-aprendizaje de la matemática que integre las TICs con fundamento didáctico, basada en el APRENDIZAJE POR DESCUBRIMIENTO, la ATENCIÓN A LA DIVERSIDAD, el análisis crítico del currículo, el desarrollo de competencias y el fomento de LA CREATIVIDAD.
24 febrero, 2021
Cubos de colores
Publicado por
Juan García Moreno
en
17:10
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
geometría 3D
,
Infantil
,
Numeración
18 diciembre, 2020
Ábaco_contador configurable. Primer ciclo de Primaria (versión en html5)
Publicado por
Juan García Moreno
en
0:04
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
ábacos
,
Numeración
Grafismos. A partir de Infantil 4 años. (versión en HTML5)
Publicado por
Juan García Moreno
en
0:00
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
grafías y grafismos
,
Infantil
09 diciembre, 2020
Tabla del 100 interactiva (versión en html5)
Publicado por
Juan García Moreno
en
3:09
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
Numeración
09 noviembre, 2020
Esto no es flash, es html5
Resolución de PAEV de nivel 1 y estructura aditiva. Análisis del enunciado. Primer ciclo de Primaria. |
(Pulsa sobre la imagen para acceder a la aplicación online. Código provisional: jgm123)
Mientras que MATE.TIC.TAC offline no se verá afectado por la incompatibilidad de Flash con los principales navegadores que tendrá lugar a finales de este año (ya que es un producto descargable, copiable, que se puede ejecutar en los dispositivos sin conexión a internet y sin abrir ningún navegador), MATE.TIC.TAC online sí que se verá seriamente afectado...Aunque confío en que pueda haber soluciones alternativas (se investigará), Flash no es ya (como sí lo fue antes) el estándar para el contenido interactivo en la web. El estándar ahora es HTML5.
Hasta hace poco no confiaba en que HTML5 pudiera ser tan eficaz para la interactividad como Flash, y, sobre todo, me parecía difícil dominar la programación para trasladar o traducir aplicaciones didácticas resueltas en Flash a este nuevo estándar. Y no es nada fácil hacerlo, porque implica (además de muchísimo tiempo de dedicación) "cambiar el chip", adoptar otro estilo, eliminar algunos hábitos, automatismos y rutinas de Flash arraigados durante muchos años de programación. Todo ello para habituarse a un nuevo, aunque con muchas similitudes, lenguaje de programación; a un nuevo estilo, a nuevas herramientas y entornos de trabajo...
Después de más de un mes sin publicar nada en este blog, ocupado por aprender HTML5 (=HTML+CSS+JAVASCRIPT), mi opinión al respecto está cambiando. Hasta tal punto que he comenzado a pasar aplicaciones de Flash a Html5, como la que se muestra aquí. La ventaja es que se puede ofrecer online sin restricciones y puede ser ejecutada en cualquier dispositivo...
Publicado por
Juan García Moreno
en
22:01
7
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
Metamodelos TICs de RP
01 septiembre, 2020
¡La mayor calidad al menor precio!
- Para que tu hijo/a pueda desarrollar en casa, de manera autónoma o semidirigida, las competencias matemáticas que puede que no logre en el cole, teniendo en cuenta los condicionantes que va a imponer al próximo curso escolar el covid-19.
- Para ofrecer a tus alumnos/as ( a través de tablets, PCs, PDI,...) experiencias matemáticas de la máxima calidad; un aprendizaje atractivo, eficaz y relevante.
- Para ti, para facilitarte enormemente la tarea, si impartes docencia en matemáticas, enriqueciendo el ambiente de tus clases con la calidad y diversidad de manipulativos virtuales, métodos, procedimientos, retos, ejercicios,... "prêt-à-porter" que te brinda MATE.TIC.TAC.
- Para tu centro educativo, para que cuente con este inestimable recurso didáctico. Nos adecuamos a la forma de compra/pago de los centros educativos: adelantamos factura, enviamos enlace de descarga vía email a través de WeTransfer, etc...(Para ello es necesario contactar previamente utilizando la página de CONTACTO)
.......................................
La
incertidumbre se cierne sobre el curso escolar 2020-2021 que se
inicia en España. Aunque ya se cuenta con unos meses de experiencia
del curso anterior, no será fácil garantizar la salud de los
miembros de cada una de las comunidades educativas de los centros
docentes (que implica la mayor contención posible de la propagación
del COVID_19) compatibilizándola, a la par, con el derecho a la
educación.
A
nadie se le escapa que estamos ante un escenario histórico, variable
y en buena medida imprevisible. Esto, a pesar de los protocolos
pactados por el Ministerio de Educación con las diferentes CC.AA,
conllevará no pocas improvisaciones de todo tipo: en los espacios,
en los tiempos, en los horarios, en la coordinación docente, en la
convivencia y socialización, en la forma de ser docente y de ser
alumno/a, en la de percibir la enseñanza-aprendizaje, en la
evaluación, en la de lidiar con cierto grado de absentismo escolar
previsible, en la de atajar el crecimiento de brechas sociales y
desigualdades,etc,etc.
Se
apuesta por medidas que garanticen una educación los más presencial y de mayor calidad posible, sobre todo en la enseñanza obligatoria, asumiendo que si no
hay presencialidad no hay igualdad. ¡Ojalá se pueda!
¿Qué
puede aportar MATE.TIC.TAC en un escenario
como este?
Evidentemente,
MATE.TIC.TAC no puede aportar nada en relación con el problema de
salud pública que supone la pandemia, pero sí en relación con no
renunciar a una educación de calidad.
Ya
desde marzo del curso pasado, se puso a disposición de docentes y
familias, a través del blog DidactmaticPrimaria, acceso gratuito e
indefinido (hasta la finalización de junio) a MATE.TIC.TAC online,
a pesar de ser este proyecto un producto educativo en venta. No voy a
insistir demasiado en las excepcionales potencialidades didácticas
de los instrumentos digitales para la enseñanza y aprendizaje de la
Matemática (Infantil, Primaria y atención a la diversidad en la
ESO) que se integran en MATE.TIC.TAC, pues en este mismo blog hay
bastante muestras de ello. Quizá insistir en la adecuación de estos
instrumentos tanto para el desarrollo de competencias como para la
valoración y evaluación de desempeños por parte del alumnado,
tanto en una enseñanza presencial como a distancia. Tanto para el
trabajo autónomo como para el semidirigido...
Puesto
que se trata de un producto en venta, me gustaría compartir esta
reflexión con los/as lectores/as:
Supongamos
que un docente (entiéndase centro educativo, AMPA, grupos de
padres/madres de alumnos/as...) del 2º ciclo de Primaria (por
ejemplo) adquiere la carpeta MATE.TIC.TAC_2º CICLO multilicencia por
128€ + 26.88 (correspondiente al 21% de IVA). Esto le permitirá
hacer hasta 25 copias legales, bien para equipos o bien para
facilitarlas a los/as alumnos/as de su grupo_clase (en un pendrive
por ejemplo). Redondeando, cada copia tiene un costo de 6,2 €
(menos que el precio de cualquier cuadernillo rutinario, mucho menor
que el precio de una suscripción mensual a otro proyecto de
matemáticas online,...) y, además, corresponde a un tratamiento
profundo -casi inagotable dadas las características de los
instrumentos- de las matemáticas de un ciclo completo, y se adquiere
de una vez y para siempre....¿Alguien pone a disposición un
material didáctico de tal calado con esas facilidades? ¡Creo
sinceramente que no!
Además,
se pone a disposición de cualquier persona la suscripción
“MATE.TIC.TAC ONLINE_fin_2020” con un único pago, prácticamente
testimonial, de 15 € (+IVA); en principio sin continuidad (ya que
habrá que ver los navegadores que seguirán siendo compatibles con
Flash en 2021) y sin ningún otro compromiso. Esta oferta permite acceder a MATE.TIC.TAC ONLINE, proyecto completo, hasta la finalización de 2020. ¡La mayor calidad al
menor precio!
(Este producto sustituye a la suscripción gratuita durante una semana que se ha venido facilitando hasta la fecha)
Publicado por
Juan García Moreno
en
22:08
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
Proyecto MATE.TIC.TAC.
25 agosto, 2020
En torno a la Resolución de Problemas en el 1º ciclo de Primaria.
El Proyecto MATE.TIC.TAC dota a la Resolución de Problemas de una riqueza de métodos, procedimientos, contextos y heurísticas que no encontrarás en ningún otro sitio. La resolución de Problemas no es aquí una ficha impresa con enunciados y espacios para los datos y las cuentas. La corrección automática, el completado asistido, la generación aleatoria, los variados procedimientos de representación y modelado de problemas, de construcción de soluciones, la excelente interactividad,... hacen de la resolución de problemas no algo terminal sino una situación generadora de aprendizajes y experiencias más relevantes, más eficaces y atractivos, más competenciales...que desarrollan actitudes más positivas hacia las matemáticas.
Por lo general, los metamodelos y modelos tic de resolución de problemas más relevantes se incluyen en el bloque "Procesos, métodos y actitudes matemáticas". Pero dado que este bloque es troncal en el currículo de Matemáticas de Primaria, encontramos colecciones de problemas y retos integrados en aplicaciones en cada uno de los bloques.
Así, para el 1º ciclo de Primaria, en "Procesos, métodos y actitudes matemáticas", se incluyen un buen número de modelos avanzados de resolución de problemas . Concretamente, para la resolución de PAEV de nivel 1 se proponen 8 metamodelos tic (A-H). Unos hacen más hincapié en la estructuración de la información, otros en la transformación, o en la composisión y construcción...No es fácil clasificarlos en este sentido ya que son formatos ricos que abordan de una manera más global, por lo general, la resolución de problemas y pertenecen, a la vez, a diferentes clases. En unos los cálculos se proponen mediante descomposición numérica natural, en otros se utilizan los algoritmos estándar, en otros el cálculo mental o la suma por compensación y la resta por desplazamiento...según el gusto del usuario...
Así, por ejemplo, el metamodelo H hace hincapié en la lectura analítico sintética de los enunciados, obligando a completar un texto en el que, de manera aleatoria, se oculta un número configurable de palabras. El completado ordenado del enunciado obliga a comprender la estructura lógica y semántica del problema. Se puede elegir el rango de las cantidades que aparecen. Además de completar el enunciado, debe completarse una igualdad con las operaciones indicadas y el resultado (modelado del problema). Los cálculos deben hacerse mentalmente. Se aprovecha para que los/as alumnos/as ensayen y apliquen estrategias de cálculo mental que deben venir manejando
.
"Resuelve construyendo con piezas de lego", para 2º de Primaria, aborda problemas aritméticos de una o varias operaciones que deben hacerse mentalmente, apoyándose en los elementos gráficos e interactivos, para construir la solución:
Esta otra macroaplicación, para 2º de Primaria, ofrece una rica diversidad de procedimientos y métodos de resolución de problemas en los que los cálculos necesarios deben hacerse mentalmente.
(Pulsa sobre la imagen para acceder al vídeo)
Publicado por
Juan García Moreno
en
22:15
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
Metamodelos TICs de RP
11 agosto, 2020
Los juegos de estrategia en el proyecto MATE.TIC.TAC
Son numerosos los juegos de estrategia (aunque no sólo de estrategia) que se incluyen en el Proyecto MATE.TIC.TAC, desde Infantil:"Caminos (nave espacial)", "Laberinto numérico_10", "Última figura colocada", "Robots y brazo robots", "Escondite en el bosque", "Bolas_agujeros", "Juego de equivalencias", "Libera la pieza roja", "Retos_rotaciones", "Ruedas giratorias", "Solitarios", Torres de Hanoi", "Cruce de ranitas", "Parking",...
Últimamente se han añadido dos juegos de "Juntar piezas del mismo color", uno para el 1º ciclo de Primaria y otro a partir del 2º ciclo de Primaria. Aunque el objetivo en ambos es formar parejas de piezas del mismo color - colocarlas juntas en una misma fila o columna dentro de un recinto de casillas cuadradas-, el procedimiento en ambos es distinto. Como en este caso una imagen vale más que mil palabras, lo mejor es verlo en funcionamiento:
MATE.TIC.TAC es un proyecto digital amplísimo y prácticamente inagotable. Esto es debido, entre otras características, a la generalidad de los múltiples manipulativos virtuales que integra, así como a las opciones de configuración y generación aleatoria de retos, ejercicios, etc... Difícilmente un docente o un alumno/a podría agotar todo su potencial a lo largo de Infantil y Primaria.
Aunque se puede considerar un proyecto ya completo, últimamente se han añadido nuevos instrumentos de enseñanza-aprendizaje (tanto a la versión online como a las versiones descargables que ofrecemos en la tienda de https://matetictac.com/). Así los usuarios tienen aún más donde elegir.
No son pocos los que consideran MATE.TIC.TAC como el más avanzado proyecto digital para Matemáticas en habla hispana. Y no dejaremos de mejorarlo, para que así sea.
Las actualizaciones que se hacen al proyecto, en un ciclo determinado, se están enviando, y se enviarán, vía email (con WeTransfer y sin cargo alguno) a los todos los usuarios que hayan adquirido ese ciclo.
Publicado por
Juan García Moreno
en
21:51
2
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
2º ciclo
,
3ºciclo
,
juego de estrategia
26 julio, 2020
...Y también laberintos numéricos.
En la entrada anterior se trataba de diferentes procedimientos de resolución de laberintos ofrecidos en el proyecto MATE.TIC.TAC, con un interés centrado en lo lúdico y topológico.
También el Proyecto MATE.TIC.TAC implementa el contexto lúdico que supone el recorrido de un laberinto mediante un muñeco teledirigido para el desarrollo del cálculo mental básico. Un monigote teledirigido selecciona los números sobre los que pasa mientras hace uno de los muchos recorridos posibles dentro de un laberinto. Se trata de conseguir una suma total dada.
En Infantil 4-5 años se utilizan números perceptivos (los de las caras de un dado cúbico), que favorecen la subitización. El reto consiste en hacer que el muñeco salga del laberinto con 10 puntos. Se persigue, así, abordar de manera lúdica, divertida e interactiva, la composición/descomposición del 10.
En 1º ciclo de Primaria se utilizan tanto números perceptivos como cantidades indoarábigas...Según el modo en que se configure, la sumas total a conseguir varía, pero siempre es una combinación lineal de los valores 5, 10, 15, 20, 25 y 30.
Publicado por
Juan García Moreno
en
23:51
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
1º ciclo
,
Infantil
,
laberintos numéricos
19 julio, 2020
Laberintos y Topología (Infantil y Primaria)
Suele pensarse que la Topología o “Geometría de la posición” es una parte complicada de la Matemática. Pero dado que ésta no se interesa por la medida sino solamente por la forma y en cómo ésta puede variar sin provocar roturas, hay elementos de esta disciplina que aparecen antes que el concepto de medida (nociones de posición, dentro-fuera, interior-exterior, formas topológicamente equivalentes, conexiones entre agujeros, caminos dentro de laberintos, etc). Estos aspectos se pueden abordar adecuadamente desde edades muy tempranas. También se puede progresar en el reconocimiento de propiedades y regularidades de carácter topológico a lo largo de la Etapa Primaria.
La construcción de la noción de “espacio” constituye una de las bases lógico-matemáticas fundamentales que sirven para estructurar el futuro pensamiento abstracto-formal. Para garantizar la comprensión de los principios fundamentales de la geometría en el futuro es de suma importancia que los docentes, mediante la selección correcta de estrategias de enseñanza y actividades de aprendizaje adecuadas, promuevan el desarrollo de nociones topológicas, proyectivas y euclidianas.
En “La representación del espacio en el niño”, Jean Piaget y Bärbel Inhelder defienden que los conceptos fundamentales y primeros del espacio (como espacio representado y no como concepción global del mismo) no son euclidianos, sino “topológicos”. Es decir, basados en correspondencias que involucran relaciones de proximidad (o de vecindaje), relaciones de separación, relaciones de orden o sucesión espacial (orden lineal y circular), relaciones de envolvimiento y continuidad. Afirman que "el orden genético de adquisiciones de las nociones espaciales, es inverso al orden histórico del progreso de la ciencia", que las relaciones topológicas son consideradas con anterioridad a las proyectivas y euclidianas por parte del niño.
Aproximadamente a partir de los dos años, las relaciones espaciales más sencillas se expresan mediante palabras como: “arriba”, “abajo”, “encima”, “debajo”, “más arriba”, “más abajo”, “delante”, “detrás”,…; dichas expresiones contribuyen eficazmente a alcanzar las nociones espaciales. En esta etapa el niño no puede distinguir, por ejemplo, un círculo de un cuadrado porque ambas son figuras cerradas, pero si las puede diferenciar de la figura de una herradura. Posteriormente logra distinguir líneas curvas de rectas y figuras largas de cortas, así como también diferenciar el espacio interior y exterior de una frontera dada o determinar posiciones relativas al interior de un orden lineal.
Luego aparecen progresivamente relaciones de tipo proyectivo. La geometría proyectiva puede entenderse, informalmente, como la geometría que se obtiene cuando nos colocamos en un punto, mirando desde ese punto. Esto es, cualquier línea que incide en nuestro "ojo" nos parece ser solo un punto, en el plano proyectivo, ya que el ojo no puede "ver" los puntos que hay detrás. Equivale a la proyección sobre un plano de un subconjunto del espacio en la geometría euclidiana tridimensional. Estudia las propiedades de incidencia de las figuras geométricas, pero abstrayéndose totalmente del concepto de medida.
Posteriormente, aparecen las relaciones de tipo euclidiano que tratan de la representación de las longitudes, ángulos, áreas y volúmenes como propiedades que permanecen constantes, cuando las figuras representadas son sometidas a transformaciones rígidas.
No cabe duda que en la resolución de los laberintos usuales (que suelen proponerse desde las edades más tempranas) se ven involucradas nociones topológicas básicas (interior, exterior, dentro, fuera, abierto, cerrado,…) y que ya desde Infantil (4-5 años) se manejan nociones básicas de tipo proyectivo y euclidiano.
El Proyecto MATE.TIC.TAC. propone la realización de laberintos clásicos (o más usuales) desde Infantil. Concretamente propone dos procedimientos diferentes de resolución de laberintos: trazado del recorrido a mano (mediante uno o más trazos) y teledirigiendo a un muñeco mediante las teclas (arriba, abajo, izquierda y derecha) de una consola presente en pantalla.
También en primer ciclo se proponen laberintos de recorrido con muñeco teledirigido, solo que más complejos que en Infantil y en los que se van introduciendo variantes (varias entradas, varios salidas, varios recorridos válidos,...
Los laberintos clásicos siempre tienen una solución, una entrada y una salida. A partir del 2º ciclo de Primaria, el proyecto MATE.TIC.TAC propone una nueva categoría de laberintos que no se ajustan a la noción clásica de "laberinto" y que conectan con aspectos topológicos que no siendo elementales pueden ser comprendidos y utilizados por alumnos/as de Primaria.
MATE.TIC.TAC propone "LABERINTOS CON PLATAFORMAS Y PUENTES" que son topológicamente equivalentes a grafos con nodos y arcos. Ahora se puede imponer una restricción al recorrido: que pase por cada uno de los puentes una sola vez. Se trata de una clase especial de "laberintos" porque puede que no tenga solución, o que tenga múltiples soluciones diferentes, dependiendo de la plataforma en que se inicie el recorrido.
Los/las lectores/as más expertos habrán reconocido, de inmediato, que se trata de una adaptación para escolares, con variantes, del famoso problema de "Los puentes de Königsberg" (origen de la Topología) y que esto enlaza directamente con la "Teoría de Grafos".
"LABERINTOS CON PLATAFORMAS Y PUENTES" puede ser considerado como una ampliación del excepcional "Taller de Topología para alumnos/as de Primaria" (ver vídeo), del proyecto MATE.TIC.TAC, incluido en el el bloque de "procesos, métodos y actitudes" del 3º ciclo. En dicho taller se proponen múltiples figuras para ser recorridas de un solo trazo, se muestran transformaciones topológicas que permiten identificar figuras topológicamente equivalentes. Se analizan, codifican y estudian recorridos y soluciones, buscando el descubrimiento de regularidades. Se puede realizar cualquier grafo colocando nodos y arcos; y evaluar si puede, o no, ser recorrido de un solo trazo. De manera concreta se puede analizar el problema de "Los puentes de Königsberg" y variantes con menos o más puentes....
Pero mientras que en "Taller de Topología" los retos propuestos se resuelven mediante trazado "a mano", "de un solo trazo", aquí se ha añadido el atractivo de adaptarlos para que puedan ser recorridos mediante un monigote teledirigido. De esta manera, esta misma aplicación se adecúa y se ofrece para alumnos/as de 2º ciclo de Primaria (obviando, si es necesario, la pretensión de que descubran patrones topológicos...)
Publicado por
Juan García Moreno
en
23:38
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir en X
Compartir con Facebook
Compartir en Pinterest
Suscribirse a:
Entradas
(
Atom
)