INVESTIGACIÓN Y DESARROLLO de CONTENIDOS EDUCATIVOS DIGITALES MULTIMEDIA para la enseñanza-aprendizaje de las MATEMÁTICAS (Infantil-PRIMARIA y atención a la diversidad en ESO) y LENGUA en PRIMARIA. Por una enseñanza-aprendizaje de la matemática que integre las TICs con fundamento didáctico, basada en el APRENDIZAJE POR DESCUBRIMIENTO, la ATENCIÓN A LA DIVERSIDAD, el análisis crítico del currículo, el desarrollo de competencias y el fomento de LA CREATIVIDAD.
10 junio, 2018
SMD. Longitud, Masa y Capacidad. 3º Ciclo Primaria.
Publicado por
Juan García Moreno
en
20:02
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Medida
,
Simulación-experimental
05 mayo, 2018
Números enteros
Publicado por
Juan García Moreno
en
15:08
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Formatos_cálculo_estratégico
,
Numeración
08 abril, 2018
GEO_BASIC_2D
"Geo*Basic*2D", de Didactmaticprimaria.net |
GEO_BASIC_2D combina un conjunto de 12 geo_herramientas básicas para la realización de construcciones geométricas bidimensionales fijas (como si las trazáramos en una pizarra analógica). Además cuenta con borrador y escritura a mano.
Desde el inicio de su diseño se ha concebido para ser el equivalente digital ampliado de ese conjunto de instrumentos de trazado geométrico que no siempre tenemos disponible en las aulas, o no siempre en buen estado. ¡Con qué facilidad se pierde, por ejemplo, la ventosa del compás de pizarra! (lo digo al menos por mí). Pero pretende ir mucho más allá...
Facilita enormemente la realización de las construcciones geométricas aportando nuevas posibilidades y funcionalidades que no son posibles con las herramientas analógicas equivalentes: colocación exacta de puntos medios, borrado selectivo de todos/as los/as segmentos, rectas, semirrectas y circunferencias; borrado de trazados uno a uno comenzando por el último, tramas de puntos interactivas, poligonal dinámica mostrando longitudes de segmentos, posibilidad de construir fácilmente polígonos desplazables (tantos como se desee, iguales o diferentes, a partir de una trama de puntos o a partir de los vértices de un polígono regular configurable); tramas ortométrica e isométrica interactivas, fácil configuración de colores y grosores de segmentos; rectas desplazables, rectas paralelas y perpendiculares pulsando sobre puntos de la geo_escuadra o del geo_cartabón, fácil y exacta medición y construcción de ángulos, área interactiva de los polígonos trazados sobre tramas, fácil trazado de circunferencias y arcos, etc...
No pretende ser el extraordinario Geogebra (en su versión para Primaria), ni tan siquiera el C.a.R u otro software análogo. En este caso las construcciones realizadas no son escalables ni girables. No es que no apueste por una geometría dinámica, no. Pero no ha sido ese el propósito de esta aplicación que hace tiempo me fue sugerida por un par de lectores. Se trata de reunir productivamente herramientas geométricas que ya he utilizado en otras aplicaciones. Se ha optado por las construcciones fijas, por reducir la dificultad, por buscar un equilibrio adecuado entre sencillez de uso, vistosidad y potencial de construcción, de manera que resulte adecuado en 2º y 3º ciclos de Primaria. Así, por ejemplo, los puntos de intersección entre diferentes elementos de trazado se determinan visualmente, como se haría con construcciones realizadas en una pizarra analógica.
En principio permite realizar cualquier construcción geométrica fija con regla (no graduada) y compás (o con regla compás y escuadra), sobre todo las adecuadas a la Etapa Primaria: mediatriz de un segmento, bisectriz de un ángulo, triángulo equilátero y hexágono regular, cuadrado y otros polígonos regulares y estrellados...Se pueden formar con suma facilidad toda clase de triángulos, cuadriláteros y otros polígonos permitiendo cuantificar sus perímetros y sus áreas en diferentes unidades de longitud o superficie; facilita el fraccionamiento creativo de polígonos, la realización de diseños geométricos con intencionalidad artística, etc...
Espiral. Ejemplo de precisión y facilidad de manejo del geo_compás. La aguja del compás se sitúa con total precisión sobre el punto deseado. |
Trabajos realizados por alumnos/as de 6º (CEIP. Blas Infante, Lebrija-Sevilla) a partir de la visualización, a través de la PDI, de la construcción previamente realizada con GEOBASIC_2D |
CUADRILÁTEROS diferentes de igual área sobre trama ortométrica. |
Es ideal para la PDI y su utilización no está reñida con las versiones de Geogebra para Primaria.
En CUERPOS GEOMÉTRICOS se ofrece una amplísima colección de manipulativos virtuales 3D, dinámicos e interactivos, así como herramientas de construcción 3D (geocubo, geoprisma,..) también basados en geometría dinámica.
En ARQUIGEOM se aborda la construcción 3D con elementos desplazables tridimensionales en perspectiva isométrica.
En GEOMETRÍA 3D se aborda la construcción policúbica con cubos en perspectiva caballera.
La práctica totalidad de las aplicaciones que he desarrollado en relación con la geometría plana incorporan, cada una de ellas, numerosos manipulativos virtuales dinámicos e interactivos: ángulos, semejanza y proporcionalidad, área de figuras planas, circunferencia y trazado de polígonos polígonos regulares,...
En una línea parecida a la de GEO_BASIC_2D se sitúan aplicaciones como GEOPLANO INTELIGENTE, GEO_CONSTRUCTOR, TRAMAS INTERACTIVAS(), MULTIGEOPLANO ,...(Esta última aplicación está basada en los puntos de intersección dinámicos de un conjunto de circunferencias)...
Publicado por
Juan García Moreno
en
19:11
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
2º ciclo
,
3º ciclo
,
Geometría_2D
04 marzo, 2018
Porcentajes. Kit 3º ciclo de Primaria.
Publicado por
Juan García Moreno
en
14:12
1
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Metamodelos TICs de RP
,
Números
25 febrero, 2018
Gracias, gracias...uno también tiene su ego...
Aunque abundan en mi blog comentarios muy similares, éste me ha tocado de lleno mi ego y he decidido publicarlo aquí. Si lo tengo especialmente en cuenta es por provenir de un profesor de matemáticas y computación con 20 años de experiencia. Una persona con un perfil así sabe valorar todo lo que conlleva el desarrollo de software educativo innovador y de calidad.
¡Muchas, gracias, J.F.G!
.................................................................................................................................................................
Publicado por
Juan García Moreno
en
23:18
12
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
17 febrero, 2018
Probabilidad de sucesos simples y compuestos. Aproximación frecuencial
Publicado por
Juan García Moreno
en
21:19
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Estadística y Probabilidad
,
Simulación-experimental
11 febrero, 2018
Experimentos aleatorios. Equipamiento configurable.
Experimentos aleatorios. Equipamiento experimental. Didactmaticprimaria.net |
En la última década del siglo XX se asiste a una propuesta de cambio curricular en la enseñanza de la probabilidad en todos los niveles educativos. En los diseños curriculares, no sólo en España, sino en otros países, se sugiere iniciar esta enseñanza a una edad más temprana e introducir la probabilidad en su "ACEPCIÓN FRECUENCIAL". La metodología recomendada está basada en la experimentación y simulación de experimentos aleatorios.
Así, por ejemplo, en los estándares del NCTM se indica que los estudiantes deben explorar mediante situaciones y de forma activa, los modelos de probabilidad. A través de la experimentación y la simulación, los estudiantes deben formular hipótesis, comprobar conjeturas y depurar sus teorías sobre la base de la nueva información. Se supone que esta metodología ayudará a superar las dificultades y obstáculos que, sobre el desarrollo de la intuición del azar han descrito distintos autores, como Fischbein y Gazit (1984).
El kit de situaciones experimentales que aquí se presenta, supone una primara aproximación, más bien informal, a esta temática. Se brindan situaciones experimentales de naturaleza aleatoria. Se pretende, a partir de la experiencia, formalizar conceptos tales como "SUCESO", "FRECUENCIA ABSOLUTA", "FRECUENCIA RELATIVA", "CASOS FAVORABLES", "CASOS POSIBLES" O "PROBABILIDAD" (Mediante la fórmula de Laplace)...Se incide de lleno en el paso de las intuiciones primarias sobre el azar (las que se forman antes e independientemente de una enseñanza sistemática) a las intuiciones secundarias (que se forman después de un proceso sistemático de enseñanza).
Con estas situaciones de simulación_experimentación se pretende apoyar el desarrollo del razonamiento inductivo, el aprender a intuir, plantear hipótesis, hacer conjeturas, generalizar… A nivel de aprendizaje, no debemos poner en duda que la forma de razonar puede tener tanto interés como los propios contenidos conceptuales; que el razonamiento es, en sí mismo, un gran contenido a aprender y totalmente irrenunciable en Matemáticas
De manera análoga, se pretende apoyar el desarrollo del razonamiento argumentativo o deductivo, animando a los/as alumnos/as a ensayar argumentaciones cada vez más fundamentadas y convincentes… motivándolos en la capacidad para detectar inconsistencias en los razonamientos propios y ajenos, a que se enfoquen en explicar, verificar, comunicar, sistematizar y descubrir...
Este kit, favorecer una actitud positiva ante la experimentación y la simulación y el desarrollo de la confianza en la propia capacidad para experimentar, descubrir y comunicar.
Publicado por
Juan García Moreno
en
19:25
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Estadística y Probabilidad
,
Simulación-experimental
28 enero, 2018
Microproyecto "LOTOS"
Estamos inmersos en una sociedad donde el auge de los juegos de azar es innegable. La publicidad sobre los mismos, agresiva e insistente,llega incluso a los teléfonos móviles desde los que, incluso niños y adolescentes, pueden descargar numerosas apps para jugarse su dinero. No cabe duda de que la crisis ha catapultado este auge.
Algunos prestigiosos médicos psiquiatras alertan de que la parte más necesitada de la población está en riesgo de volverse adicta al juego para solucionar sus problemas económicos. La mayor parte de estos juegos no son controlados o fiscalizados por el Estado, son una modalidad ilegal y los puntos de venta han proliferado sin que las autoridades tomen correctivos. Cada vez son más las voces que alertan de que "su impacto en las mentes de los niños y jóvenes aún en desarrollo es irreparable. Se modifica su conducta, crecen con la noción del dinero fácil, su pensamiento empieza a dirigirse de manera precoz a temas que no le son sencillos de manejar y terminan expuestos a la frustración y a la ansiedad". Está comprobado, además, que las personas adictas a los juegos de azar tienden a tomar malas decisiones cuando experimentan emociones negativas como ansiedad o tristeza...
Todos nuestros/as alumnos/as tienen ya experiencias y conocimientos previos, aunque sean muy imprecisos, sobre loterías y juegos da azar, sobre lo posible, lo imposible y lo probable. Quizá una correcta educación vivencial y experimental de la probabilidad de acertar, de la probabilidad de ganar y perder (en situaciones de azar que estén al alcance de su comprensión) no solucione el problema comentado anteriormente pero, no cabe duda, se presenta como un conocimiento imprescindible en estos tiempos. Si a eso sumamos la enorme cantidad de cuestiones sociales y científicas sometidas a incertidumbre, a probabilidad,... su adecuado tratamiento en el currículo de Matemáticas de Primaria se hace ineludible y exige, por derecho propio, mayor tiempo de tratamiento y mayor calidad de los recursos utilizados en su enseñanza-aprendizaje.
Cuando nos limitamos a experimentos aleatorios en los que los sucesos elementales son equiprobables, la definición de "probabilidad" y su cálculo según la regla de Laplace ("La probabilidad de un suceso A se obtiene dividiendo el número de resultados que forman el suceso A entre el número de resultados posibles") no presenta apenas dificultades.
Otra cosa muy distinta es darle sentido real, práctico y formativo a la fracción o número decimal que expresa dicha probabilidad. Es importantísimo que los/as alumnos/as comprendan y experimenten que la probabilidad teórica así obtenida marca una tendencia que presumiblemente se cumplirá con bastante aproximación cuando el experimento se realice un elevado número de veces. La probabilidad tiene poder de predicción en tanto en cuanto cuantifica una tendencia...
Si el experimento aleatorio se realiza un número de veces pequeño, las "rachas de sucesos" pueden llevarnos a dudar de la probabilidad teórica esperada. De cualquier manera, y volviendo a la regla de Laplace, las verdaderas dificultades están en la determinación de los resultados posibles.
"microproyecto_LOTOS" se concibe como un proyecto dentro del área de matemáticas adecuado para la mayoría de los/as alumnos/as del 3º ciclo de Primaria. Pretende ser un espacio para experimentar las relaciones entre la probabilidad teórica, la probabilidad simulada experimentalmente y, si se desea, la probabilidad en sorteos reales realizados por los propios alumnos de acertar una combinación ganadora en loterías sencillas.
Las diferentes aplicaciones que lo integran proponen un desarrollo inductivo. Se define el tipo de loto y el boleto correspondiente para realizar un determinado número de apuestas. Ello determinará el número de combinaciones o resultados posibles. No se habla aquí de números combinatorios y el término "combinaciones" se utiliza en sentido coloquial, como sinónimo de resultados posibles.
Ana Zambrano, 6º_2017-2018 |
Irene Hens, 5º_2017-2018 |
Los/as alumnos de 5º y 6º (lo sé por experiencia) están preparados para obtener, de manera exhaustiva, todos los casos posibles empleando procedimientos algorítmicos y gráfico-geométricos (ver imágenes anteriores). Así, por ejemplo, en "LOTO_4_2" pueden obtener los resultados posibles, incluso ordenados, siguiendo un sencillo algoritmo de ordenamiento: 1-2, 1-3, 1-4, 2-3, 2-4 y 3-4. Resulta , además, que coincide con el número total de segmentos, entre lados y diagonales, de un cuadrilátero (4 vértices). Algo análogo, aunque con un número mayor de casos posibles, pueden hacer en "LOTO_8_2"...
Se pueden realizar sorteos uno a uno (para comprobar el buen funcionamiento aleatorio de la aplicación) así como tandas de muchos sorteos rápidos. Para cada sorteo, se muestran las frecuencias correspondientes a cero, uno, dos, ...números acertados. También se muestra la frecuencia relativa (de acertar una combinación ganadora), que será la base para realizar una aproximación frecuencial a la probabilidad experimental. Se utiliza la media aritmética de las frecuencias relativas de tandas de sorteos, para aproximarnos, aún mejor, a la probabilidad experimental. Ésta se compara con la probabilidad teórica y se analizan y discuten los resultados...
En la aplicación "MULTILOTOS", se generaliza la situación. De una manera comodísima se pueden configurar una infinidad de lotos diferentes. Podemos despreocuparnos de hallar la probabilidad teórica ( ya que se pueden presentar números muy elevados de combinaciones diferentes posibles) y analizar las frecuencias obtenidas para cada suceso posible como aproximación a la probabilidad de los mismos.
Se ofrecen modelos de boletos, como material fotocopiable e imprimible, con los que se pueden llevar a cabo sorteos reales para lotos sencillas. Ello permitirá relacionar probabilidad real, probabilidad experimental simulada y probabilidad en situaciones reales.
Publicado por
Juan García Moreno
en
20:09
2
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
3º ciclo
,
Estadística y Probabilidad
,
microproyectos
,
Simulación-experimental
Determinismo y azar. Situaciones experimentales.
Publicado por
Juan García Moreno
en
19:55
0
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
2º ciclo
,
Estadística y Probabilidad
,
Simulación-experimental
06 enero, 2018
Fracciones en Primaria. Kit_2º ciclo y kit_3º ciclo.
Publicado por
Juan García Moreno
en
19:53
2
comentarios
Enviar por correo electrónico
Escribe un blog
Compartir con Twitter
Compartir con Facebook
Compartir en Pinterest
Etiquetas:
2º ciclo
,
3º ciclo
,
Metamodelos TICs de RP
,
Números
Suscribirse a:
Entradas
(
Atom
)