19 marzo, 2013

Fracción de un número y estimación de fracciones sobre la recta numérica


Os presento dos aplicaciones que no siendo nuevas no estaban incluidas en la colección de "Manipulables_Virtuales_Matemáticas_II". En realidad, la primera de ellas, "FRACCIÓN DE UN NÚMERO", se había incluido incompleta, sin la parte práctica. La versión definitiva de ésta así como la segunda aplicación "ESTIMACIÓN DE FRACCIONES", se me habían "traspapelado".


Fracción de un número. Comprender y practicar.


Estimación de fracciones sobre la recta numérica

Ambas aplicaciones, no obstante, se incluirán como apartados o subapartados del menú de una  macroaplicación  internivelar que estoy preparando sobre fracciones.

06 marzo, 2013

Perímetros. Una propuesta internivelar



Perímetro y área son dos magnitudes geométricas fundamentales en el estudio de las formas planas. Con demasiada frecuencia el estudio de estas dos "variables" es excesivamente rutinario, sin buscar conexiones entre ambas, y enfocado, con excesiva prisa, hacia el cálculo numérico de perímetros (lo que empobrece su vertiente y significado geométricos). Esto no es sino consecuencia lógica y directa de la tradición escolar y de nuestra formación en matemáticas y su didáctica.

Los propios conceptos matemáticos no son estáticos sino que evolucionan paralelamente a la historia de las matemáticas enriqueciéndose e interconectándose unos con otros de manera cada vez más rica y creativa. Así, por ejemplo, la geometría fractal ha puesto de manifiesto que una región de área finita puede tener un perímetro infinito (ver Curva de Koch). Sirva esto último para justificar el estudio de relaciones básicas perímetro-área en la enseñanza de las matemáticas básicas tendente a que los/as alumnos/as descubran familias de figuras isoperimétricas coincidentes en área, familias de figuras isoperimétricas  no coincidentes en su área, modificaciones perimétricas que no varían el área (lo cual conecta de manera natural con buena parte de la obra artístico matemática de Mauritius Cornelius Escher- embaldosados figurativos-), etc...

¿Hasta qué punto los docentes comprendemos, experimentamos, exploramos y conectamos los contenidos que queremos que nuestros/as alumnos/as aprendan? 

[...] Pero hay algo más. Y se trata de algo que he llegado a creer, por contraste con aquello de lo que tengo evidencia a través de la investigación: creo que los niños necesitan jugar más. Esto se debe a que las matemáticas se ocupan de abstracciones. El álgebra y la geometría pueden ser vistas como un juego con reglas más o menos arbitrarias sobre objetos que son abstracciones (por cierto, ambas materias resultan ser útiles en el mundo real, pero no tratan sobre eso). ¿Cómo podrían aprender los niños a usar el álgebra y la geometría? Si tienen muchas experiencias concretas de las que abstraer. Logramos eso bastante bien en nuestras clases, pero también necesitan la práctica de jugar con las abstracciones. Y los niños son muy buenos en ésto; inventan juegos todo el tiempo. Me gustaría ver mucho más juego matemático en la escuela primaria.
Pero, ¿deberían todos los maestros tener más experiencia matemática? Sí, aunque sospecho que hay muchas cosas en las que deberían tener más educación: alfabetización, psicología infantil... Lo que me gustaría ver, no obstante, es que todos los docentes tengan una educación en matemáticas al punto de ser positivos respecto de ellas, que tengan confianza en sus conocimientos según el nivel que enseñan, y que sepan lo suficiente como para alentar a sus alumnos para aprender la materia.Mucho más importante es que los maestros especializados en Matemática posean una mayor comprensión matemática. Creo que ningún maestro tiene jamás lo suficiente. Somos profesionales como docentes de Matemática, y los profesionales deben comprometerse con el desarrollo profesional en su área de trabajo. Si esperamos eso de las estrellas del fútbol, ¿por qué no de los profesores de Matemática? Imaginar que un profesor de Matemática puede dejar de aprender sobre la materia equivale a sugerir que un equipo de fútbol de primer nivel puede dejar de entrenarse.


Este nuevo recurso no sólo va dirigido a alumnos/as (que son siempre los destinatarios finales). Como casi todos los que diseño, está pensado, en primera instancia,  para los docentes. Pretendo favorecer, con el mismo, una visión más rica y amplia de la enseñanza-aprendizaje de los perímetros que no se reduzca a una simple medición y suma de longitudes... Invito a los docentes que no hayan experimentado o reflexionado suficientemente sobre este tópico a que, de una manera especial, realicen ellos mismo las exploraciones que se proponen en el apartado cuarto del menú ("Exploración de relaciones perímetro-área. regularidades").


25 febrero, 2013

Velocidad, móviles y razonamiento matemático

Ofrezco aquí la versión definitiva (ampliada y mejorada) de esta aplicación que ya fue presentada y tratada en dos post anteriores: 



    Se trata de la versión con la que a finales de septiembre me decidí a participar, un año más, en la convocatoria a  Premios al desarrollo de Materiales Educativos_2012 del Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF). En esta ocasión no he obtenido premio, lo cual asumo con total naturalidad y deportividad después de haber sido premiado en cinco convocatorias consecutivas... 



    Está pensada para niños/as del tercer ciclo de Primaria así como para la atención a la diversidad en ESO. Dispone de guías (didáctica y de utilización) así como de una justificación de la propuesta.


    Pantalla de acceso a los diferentes apartados de la aplicación


    05 febrero, 2013

    Cuestión de Educación

    Para la reflexión sobre el sistema educativo, la formación del profesorado y otras cuestiones educativas y culturales  en España...



    http://www.lasexta.com/videos/salvados/2013-febrero-3-2013020300007.html


    02 febrero, 2013

    Resolución de problemas de matemáticas en Primaria. Problemas "de competencias"





    En el curso escolar 2008-2009 participé en un Grupo de Trabajo organizado por el CEP de Lebrija (Sevilla) y coordinado por mi colega y amigo Domingo Galán Ojedo que tenía como objeto el diseño de problemas aritméticos escolares de diferentes niveles y tipos. A él se debe, creo, la denominación de "problemas de Competencias" que aparece en el documento de arriba y en el título de este artículo. No sé si es la denominación más adecuada pero ésta, de cualquier modo, no es una cuestión fundamental aquí. Me propongo, en cambio, analizar las cuestiones didácticas fundamentales que guían este novedoso enfoque de la RP (resolución de problemas).

    En el artículo Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV) (sábado, 27 de octubre de 2012) expliqué con detalle - y listado de recursos TIC- el método fundamental que sigo en la resolución de PAEV, en el que van de la mano el desarrollo de competencias lingüísticas y el desarrollo de competencias matemáticas. Como se verá a continuación, el enfoque de "problemas de Competencias" , entre otros aspectos, hace hincapié también, y de manera especial, en la importancia de la lectura comprensiva de información escrita, tabulada y gráfica...Dicho de otro modo, contempla la RP como tarea ideal para el desarrollo conjunto de competencias lingüísticas y matemáticas. Todo ello en consonancia con la normativa educativa andaluza para el tratamiento de la lectura desde cada una de las áreas curriculares...

    ..."el proyecto educativo incorporará los criterios generales para el tratamiento de la lectura y la escritura en todas las áreas y materias del currículo" ... 
    (Instrucciones de 11 de junio de 2012 de la Dirección General de Ordenación Educativa sobre el tratamiento de la lectura para el desarrollo de la competencia en comunicación lingüística...)

    El documento que encabeza este artículo es un cuadernillo de problemas tal y como se entrega a los/as alumnos/as. Presenta siete situaciones (propuestas por varios maestros/as diferentes) que han sido abordadas, cada una de ellas, mediante numerosos problemas enlazados...

    Una característica común a todos y cada uno de ellos, que salta a la vista, es que la información textual , tabular y gráfica es profusa. Se pretende que los/as alumnos/as de segundo y tercero ciclos de Primaria se acostumbren a enfrentarse, en clase de Matemática y en relación con la RP,  con informaciones no necesariamente cortas  y fragmentadas - como suele ser habitual - sino que deben asumir que en clase de Matemáticas también se lee, que la lectura comprensiva y el análisis de la información es la fase inicial del proceso de RP. Ilustra, además, la naturalidad y la frecuencia con que se presenta información textual y, sobre todo, la tabulada y gráfica, para abordar la matemática de las situaciones de la vida diaria...

    Un centro de interés o situación real y cotidiana (equipo de natación, cumpleaños, carnaval, boda, comedor escolar,...) aglutina un conjunto de problemas perfectamente contextualizados (datos reales, situaciones y lugares reales,...) que abordan dicha situación desde diferentes puntos de vista de interés matemático, implicando contenidos de los diferentes bloques (números y operaciones, medida, formas y orientación en el espacio, tratamiento de la información,...). En cada situación, la información facilitada (de entrada) así como la información relativa al procesamiento de ésta (operaciones indicadas, cálculos,...) y las soluciones, se integran de manera ordenada en el espacio del papel.



    17 enero, 2013

    e-Matemáticas


    Scopeo número 004 e-matematicas from Eraser Haikus


    Buen monográfico sobre Matemáticas y TICs; aunque, a mi juicio, es sensiblemente mejorable el capítulo 3 correspondiente al "Banco de recursos de e-Matemáticas" : considero que se relacionan recursos muy heterogéneos desde el punto de vista de su relevancia cualitativa y cuantitativa, que se omiten otros mucho más relevantes y fundamentados y que está sesgado hacia la ESO).

    Desde aquí, mi agradecimiento a Eduardo Zurbano Fernández por referenciar este blog en el monográfico y por el elogio que hace de mi trabajo.

    04 enero, 2013

    ¡Bienvenido 2013!


    ¿Qué nos deparará este nuevo año?
    Muchas incertidumbres y malos presagios se ciernen sobre numerosas parcelas de la actividad humana global (economía, trabajo, medio ambiente, alimentación, sanidad, energías,...) en esta persistente crisis sistémica.

    Por otro lado, "...más de 100 sociedades científicas, universidades, institutos de investigación y organizaciones de todo el mundo se han unido para dedicar el año 2013 como un año especial para las matemáticas del Planeta Tierra.
    Los desafíos que enfrenta nuestro planeta y nuestra civilización son multidisciplinarios y multifacéticos, y las ciencias matemáticas juegan un papel central en el esfuerzo científico para comprender y hacer frente a estos desafíos."


    Yo, por mi parte, a modo de juego, voy a tratar aquí de un aspecto cierto y poco comprometido del año 2013: su análisis desde el punto de vista de la divisibilidad manejando conocimientos que sería deseable que los/as alumnos/as dominasen al final de la Educación Primaria.

    Salta a la vista que 2013 no es un número primo, pues es múltiplo de 3 (la suma de sus cifras es 6 - un múltiplo de 3-). Por otra parte se cumple que la diferencia entre la suma de sus cifras pares y la suma de sus cifras impares es 0. Por lo tanto, 2013 es múltiplo de 11 (un número es divisible por 11, si la diferencia entre la suma de las cifras que ocupan los lugares impares y la de los pares es 0 o un múltiplo de 11).

    Como 2013 es múltiplo de 3 ( o divisible entre 3), se podrá expresar como suma ( o diferencia) de múltiplos de 3. Así, por ejemplo:
    2013 = 2100 - 87
    2013 = 1800 + 180 + 33, etc...
    Por lo tanto, sabido de antemano que uno de los factores primos de su descomposición factorial es el 3, podremos calcular otro factor así:
    2013 : 3 = (2100 - 87) : 3 = 2100:3 - 87:3 = 700 - 29 = 671
    2013 : 3 = (1800 + 180 + 33) : 3 = 600 + 60 + 11 = 671, etc...
    Tenemos, pues, que 2013 = 3 x 671. Lógicamente, el factor 11 presente en el número inicial no ha desaparecido, sino que está presente en la descomposición del número 671 (671 = 11 x ¿?).

    Teniendo en cuenta que 11 x 60 = 660, es fácil averiguar que 671 = 11 x 61. Llegamos, así, a la descomposición factorial del número correspondiente al recién estrenado año:

    La siguiente aplicación nos muestra, en un instante, todos los números primos comprendidos entre 1 y cualquier número menor que 40.000. También permite obtener, en un instante, la descomposición  factorial de números menores que 1000.000.000 evaluando, a la par, si el número estudiado es, o no, primo:

    11 diciembre, 2012

    El currículo de matemáticas no es sólo numeración. La numeración no es sólo cálculo.

    De nuevo me veo llevado a hacer un análisis crítico de ciertos aspectos en torno al “método ABN” y al correcto enfoque del cálculo en la escuela en relación con las características del cálculo en nuestra sociedad. Soy consciente de que hacer afirmaciones rotundas al respecto nos lleva a un terreno no exento de peligros.
    algoritmo ABN
    Fuente: "algoritmo abn"

    El blog “Algoritmos ABN” es uno de los sitios de referencia para la didáctica de la Matemática en Primaria que relaciono en la parte derecha de mi blog. Y es que estoy totalmente de acuerdo con el enfoque flexible del cálculo que Jaime Martínez Montero ha etiquetado con la marca “ algoritmo abn”.  De hecho, con anterioridad a la aparición de esta marca, una minoría de maestros/as ya veníamos defendiendo y practicando un cálculo flexible alternativo al tradicional, sobre todo desde que a finales de los 90 se multiplicaran las publicaciones que abordaban el tratamiento de algoritmos no tradicionales, de las operaciones básicas, en la escuela.

    Por mi parte, vengo desarrollando con mis alumnos un cálculo pensado, flexible y basado en números y he desarrollado múltiples formatos digitales interactivos para divulgar y favorecer la práctica del cálculo (tanto descontextualizada como contextualizada)  bajo este enfoque ("Así calculamos en mi cole") aunque no bajo la etiqueta "abn".

    Este enfoque flexible apuesta por el desarrollo de algoritmos no tradicionales de las operaciones aritméticas para evitar las rigideces que presentan los tradicionales. Confiere al cálculo un carácter subjetivo y creativo (frente a "Esta división se hace así", "Yo hago esta división así"). Hace del cálculo una tarea pensada, matemáticamente relevante (algo que no se puede asegurar, sin más, en enfoques más tradicionales) dándole el rango de habilidad cognitiva de orden superior; y se adapta mejor a la diversidad del alumnado presente en las aulas. Y, sobre todo, es más coherente e integrador que el cálculo tradicional ya que aprovecha la natural descomposición/composición numérica de los números y las mismas estrategias y propiedades fundamentales de las operaciones se utilizan tanto para el cálculo que se apoya en lápiz y papel como para el que se realiza  “de cabeza” (que ha pasado a ser, sin duda, el verdaderamente importante)
    "Hay otra razón que aboga por la inclusión del cálculo pensado en las clases, y es que la mayoría de las personas que son consideradas hábiles para calcular rara vez hacen uso de los algoritmos usuales, sino que suelen recurrir a manipular los números para facilitarse la tarea."
    Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67.
    "La tragedia del algoritmo estándar en la escuela, ha llegado de la mano de las calculadoras de bolsillo y de las cajas registradoras.
    Lo que para todo el mundo era un elemento crucial de cualquier currículo escolar hace veinte años, ha empezado a ser considerado como algo que va perdiendo importancia al mismo ritmo que aumenta el interés por el cálculo mental y estimativo." 
    Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 113.  

    El cálculo que realizan la mayoría de las personas en nuestra sociedad actual es un cálculo instrumental (calculadoras, cajas registradoras, computadoras,…). ¿Quién hace cálculos fuera de la escuela con ayuda de lápiz y papel? ¿Significa esto que no tiene ya sentido desarrollar razonables competencias de cálculo en nuestros/as alumnos/as?

    No, evidentemente no, puesto que toda capacidad humana debe ser desarrollada. Significa plantearse la naturaleza y tipología del cálculo que tiene sentido desarrollar en la escuela, la magnitud de los números con los que se debe operar y las formas más razonables de abordarlos. Significa un esfuerzo por contextualizar el cálculo así como por el desarrollo de estrategias personales para calcular…Significa priorizar el cálculo aproximado y la estimación. Significa entender bien, de manera integrada y proporcionada, el currículo dematemáticas. 

    Tradicionalmente el peso curricular recaía de manera aplastante sobre la numeración, más en concreto sobre los algoritmos de las operaciones básicas.  Se trataba de un currículo de matemáticas ciertamente empobrecido. Este es uno de los aspectos fundamentales que hay que superar. Actualmente tiene menos sentido que nunca que el cálculo (del tipo que sea) acapare la mayor parte del tiempo destinado al desarrollo del currículo de matemáticas en la escuela, sobre todo si se trata de un cálculo predominantemente descontextualizado. No faltan los que abogan por destronar el cálculo de la cima del quehacer matemático en el que se encuentra. Hay que asumir que el currículo de matemáticas de Primaria aborda las cantidades, el espacio y las formas, los cambios y relaciones, así como la incertidumbre. Y que el eje vertebrador de estos bloques es la resolución de problemas. 


    "Jaime Martínez, inspector de educación, explorador de algoritmos, ha soñado un mundo sin cuentas. Ha ido más allá. Lo está poniendo en práctica. 225 niños de Primaria de la provincia, entre Primero y Quinto, aprenden matemáticas sin hacer cuentas..."
    Cuando uno visita el blog “Algoritmos ABN (que persigue entre sus objetivos explícitos erradicar las viejas cuentas y favorecer una matemática más divertida), observa que casi la totalidad de la ingente cantidad de imágenes y vídeos que en él se incluyen  se centran en cálculos numéricos. Aparentemente se trata de "nuevas cuentas" que se articulan en forma de tablas de números. Sin embargo hay una diferencia notable con las cuentas tradicionales. Desde que se inicia el proceso de resolución, cada fila que se va escribiendo es una igualdad equivalente a la anterior, de manera que no hay que esperar a que el proceso haya acabado para haber transformado de manera coherente el cálculo inicial propuesto: 236 - 189 = 136 - 89 = 106 - 59 = 100 - 53 = 50 - 3 = 47 (para una resta "por comparación"), o 236 - 189 = 11 + 36 ( para una resta "por escalera ascendente"),...

    Evidentemente el hecho de que se recurra continuamente a la pizarra o al papel de una ficha o cuaderno no significa que no se trate de un cálculo “pensado”. Otro aspecto a tener en cuenta es que se utilizan algoritmos extendidos, más extensos, que van dando cuenta de cada uno de los pasos realizados. Esto no debe identificarse con una mayor dificultad que los tradicionales (que son “más económicos”) dado que a medida que un alumno progresa en el desarrollo de competencia en cálculo se reduce notablemente el número de pasos que utiliza para resolver un cálculo determinado. No me cabe duda del buen enfoque que se hace en ese sentido, priorizando claramente la comprensión sobre la mecanización y favoreciendo el afloramiento de modos personales de realizar los cálculos.
      
    Pero, con sinceridad, siento que los/as maestros/as debemos ser muy torpes cuando parece ser que necesitamos que se nos ilustre hasta la saciedad el mismo método de cálculo para cada uno de los diferentes cálculos posibles (que son, evidentemente, infinitos). En realidad, casi todo se reduce a que tanto la suma, resta, multiplicación y división se pueden realizar “por partes”,  de manera flexible o personalizada ( no necesariamente todos/as los/as alumnos/as en los mismos pasos ni con los mismos números) y basándose en la descomposición numérica y las propiedades fundamentales de las operaciones básicas. Es por ello que el blog aludido transmite visualmente la idea de que el quehacer fundamental en  matemáticas de Primaria es el cálculo. No vemos en el blog ninguna referencia al mundo del espacio y las formas ( a excepción del método para resolver raíces cuadradas), ni al de la incertidumbre …

    Podríamos extendernos tanto como quisiéramos en poner de manifiesto (como se hizo desde el origen de las matemáticas) las relaciones entre números y formas, cómo se apoyan y refuerzan mutuamente y cómo fruto de esa simbiosis se ponen de manifiesto con mayor fuerza patrones  o regularidades numérico-geométricas… No tendría nada que objetar si se identifica el “método ABN” con un método de cálculo, como así se presenta habitualmente. Pero es que desde el blog aludido y desde otros, así como desde diferentes medios de comunicación y documentos se hacen afirmaciones (a mi juicio poco rigurosas) más generales que apuntan hacia una inconveniente metamorfosis ( CÁLCULO = ALGORITMOS ABN = "LA SENDA PARA  ALCANZAR COMPETENCIA MATEMÁTICA"). ¿Debe interpretarse como la única senda? ¿Debe interpretarse que la competencia en cálculo es la única o más importante de las competencias matemáticas? Espero que no, porque ello supondría reducir el currículo de matemáticas a simple cálculo, volviendo a incurrir en errores parecidos a los que se pretendía superar… Esto me parece especialmente peligroso en estos tiempos tan tecnológicos en los que curiosamente se exalta más que nunca el desarrollo de la capacidad de cálculo (a veces de manera poco razonable, como si se pretendiera crear "calculadoras humanas") identificándolo con la excelencia en matemáticas.

    Me voy a limitar aquí al análisis de algunas afirmaciones relacionadas con la resolución de problemas y con la descripción de las características del "cálculo abn": 
    Con la nueva didáctica de las matemáticas que propugna Jaime Martínez se llega a los resultados correspondientes por desagregación o descomposición de las cantidades a operar... (Jaime.M.M)
    ¿Nueva didáctica de las matemáticas o no tan nueva didáctica del cálculo? 
    "Las viejas cuentas son la causa fundamental que impide que los alumnos sepan resolver problemas"(Jaime.M.M)
    Uno de los grandes "fallos" en la enseñanza tradicional de la aritmética es que se identifica operación con el algoritmo (cuenta) que la resuelve:
    "Nuestro aprendizaje de cada una de las operaciones está tan ligado a su algoritmo que se suele confundir operación con el algoritmo usual que la resuelve" Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67. 
    No volvamos a cometer el mismo error (operación ¹ algoritmo de la operación)
    Además, desde hace mucho tiempo los maestros nos venimos  quejando de que los alumnos no sepan con qué operación (u operaciones) se resuelve un determinado problema ("¿Es de sumar o de restar?"), en mucha mayor medida que sobre la propia realización de los cálculos. 
    "Los algoritmos ABN aumentan notablemente la capacidad de resolución  de problemas" (Jaime.M.M)
    ¿Cómo? ¿De qué manera? ¿De qué problemas? Porque la realización de cálculos, incluso en los problemas típicamente aritméticos - que no son los únicos-, es una de las fases finales del proceso de resolución, y no precisamente la más relevante. A no ser que se considere como "problema" realizar un determinado cálculo. Esto sólo podría aproximarse a la verdad en los problemas aritméticos más elementales, los de una sola operación, en caso de que se presenten a los alumnos de forma que el "espacio de búsqueda" sea prácticamente inexistente. (Ver "Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV)") 

    "Un grupo de investigadores europeos ha visitado recientemente el Colegio San Rafael (Cádiz) para conocer el funcionamiento de este método de cálculo ideado como sabemos por Jaime Martínez, inspector de educación de la Delegación de Cádiz.

    Procedentes de distintos países como Austria, Holanda, Alemania, etc. dichos investigadores pudieron comprobar de primera mano los resultados de este revolucionario método que demuestra que los alumnos de primaria mejoran no sólo su nivel de cálculo y su capacidad de resolución de problemas sino también su motivación en el aprendizaje de las matemáticas." [...]

    [Fuente: "Las matemáticas de Cádiz". Diario de Cádiz (versión impresa). Fecha: 21/09/2012]

    Algoritmos y resolución de problemas
    Fuente: "algoritmo abn"
    En el blog “Algoritmos ABN”, se hace bastante alusión teórica a la relación entre las operaciones y las tipologías de problemas aritméticos de enunciado verbal (PAEV) que resuelven. Sin embargo este "revolucionario método ABN” no explicita ningún método concreto de resolución de estos problemas. Encontramos casi exclusivamente un modelo de resolución de PAEV, el modelo más tradicional. Con frecuencia vemos imágenes en las que el/la maestro/a ha escrito el enunciado de un PAEV en la pizarra y, a continuación, sin más, el algoritmo extendido con el que se resuelve. Es cierto que se asocia con mucha frecuencia un cálculo concreto con un determinado problema como forma de contextualizar el cálculo, y que incluso se hace una análisis comprensivo del enunciado. Lo peligroso es  asociar el algoritmo con la resolución de un PAEV ( incluso para los problemas más elementales), como se recoge en este texto del propio Jaime M. M. (hablando de la "doble resta" y de la "sumirresta"):

    "[...] Aparte del nuevo campo de posibilidades de cálculo que abre, la importancia fundamental de estas operaciones radica en que simplifica enormemente el mundo de los problemas porque convierte, de golpe y sin transición, muchos de ellos de dos operaciones que son difíciles para los niños (todos los de dos restas y todos los de una suma y una resta) en problemas de una operación, simplificando enormemente la complejidad de su comprensión y su realización. Hay siete problemas distintos de sumar y, como vimos hace poco, trece diferentes de restar. Quiere decir que, combinándolos simplemente, nos salen 91 problemas distintos de sumar y restar (13 x 7), y 169 de dos restas (13 x 13). Es decir, que con la doble resta y la sumirresta cambiamos 260 problemas diferentes de dos operaciones en problemas de una operación. ¡Casi nada!


    Los problemas de dos operaciones son especialmente difíciles para los niños. No es complicado averiguar por qué y hay una amplia literatura científica que da cuenta de ello. Para nuestro propósito, baste pensar que en un problema de una operación aparecen los datos y la pregunta. En uno de dos operaciones aparecen los datos de la primera operación, pero no la pregunta, mientras que en la segunda operación sí aparece la pregunta, pero solo uno de los datos. Véase el caso siguiente: “Un bosque con 2145 árboles se incendia y arden 368. Después plantan 325 árboles más. ¿Cuántos árboles hay ahora?” Es evidente que la primera operación (2145-368) no tiene pregunta, y que la segunda (1777+325) no tiene el dato de los 1777 árboles.


    Por lo anterior, la sumirresta facilita mucho todo el proceso. Es fácil pasar directamente del texto al formato del algoritmo, y luego permite múltiples posibilidades de desarrollar los cálculos de uno u otra manera. La resolución clásica obliga a realizar primero una operación y luego otra, mientras que aquí se pueden abordar los cálculos sucesiva o simultáneamente." 

    Aquí se hacen afirmaciones explícitas e implícitas a mi juicio poco rigurosas:
    • Hay operaciones que simplifican enormemente la complejidad de la comprensión de un determinado problema, cuando comprender un problema implica previamente descubrir las relaciones entre las magnitudes y las operaciones que transforman unas en otras...Ahí radica precisamente la esencia del acto creativo que supone la resolución de un problema y ahí radica, por tanto, su dificultad. De nuevo se identifica operación con algoritmo de la operación, que es un útil para efectuar ésta, y parece identificarse la realización del algoritmo con la esencia de la resolución de un problema. No comparto tal idea.
    • Parece que la tipificación de problemas es pura aritmética combinatoria. Aunque estoy seguro de que esa no es la visión de Jaime M.M. al respecto.
    • Parece que el proceso de resolución de problemas aritméticos se limita al paso del enunciado al formato del algoritmo, es decir, del texto al cálculo. Esta peligrosa asociación más que superada en la amplia literatura científica a la que el propio Jaime M. M. alude, supone un  reduccionismo del aspecto más troncal y vertebrador del currículo de matemáticas: la resolución de problemas (RP). Si bien esto se puede hacer fácilmente, aunque no sea lo más conveniente en la R.P, para PAEV de nivel 1(una sola operación), me llama poderosamente la atención lo artificioso que resulta justificar la doble resta y la sumirresta en relación con la resolución de PAEV de nivel 2. Sinceramente, parece un invento para encajar, con calzador, la resolución de estos problemas con un único algoritmo... No creo que sea éste el camino más conveniente en la búsqueda de comprensión. Me parece una senda poco conveniente en la didáctica de RP, máxime viniendo de una persona que apuesta por algoritmos extendidos, aunque sean menos económicos que los tradicionales, para  favorecer una mayor comprensión de los cálculos realizados y el desarrollo de estrategias de cálculo... 
    Para terminar: 
    Desde una perspectiva holística de las matemáticas, cualquier parte (bloque de contenidos) debe gozar en buena medida de los atributos de la totalidad (currículo de matemáticas) pero no sería riguroso  identificar la parte con el todo ni  el todo con la parte.






    25 noviembre, 2012

    Regularidades en el plano. Mosaicos, cenefas, celosías...

    En la entrada titulada "Tramas de puntos, geoplanos y pizarras geométricas", se comentaba que un recurso barato y de enorme interés didáctico para trabajar aspectos geométricos a lo largo de toda la Etapa Primaria lo constituyen las tramas (o mallas) de puntos ( la trama ortométrica y la isométrica, fundamentalmente).  Éstas, a efectos prácticos,  pueden ser consideradas geoplanos dibujados. Podemos fotocopiarlas y obtener tantas copias como se desee de las mismas. Permiten abordar numerosas cuestiones de geometría dibujada (el dibujo es el procedimiento específico de la geometría) a lo largo de toda la Educación Primaria.

    Entre las cuestiones que permiten abordar, y enlazando con la entrada anterior de este blog, se encuentra el trabajo apoyado en el descubrimiento y aprovechamiento de patrones y regularidades geométricas en relación con el diseño de mosaicos, cenefas, celosías... Puesto que la la geometría dibujada pone de manifiesto aspectos artísticos y plásticos que se sustentan en aspectos matemáticos, podemos aprovechar las tramas de puntos para interrelacionar  Matemáticas y Educación Plástica en Primaria.