Mostrando entradas con la etiqueta Geometría_2D. Mostrar todas las entradas
Mostrando entradas con la etiqueta Geometría_2D. Mostrar todas las entradas

14 febrero, 2016

Hexágono regular modular. Investigación geométrico-numérica.

Ya en otras ocasiones he tratado sobre "Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en Primaria". Para el hexágono regular modular en concreto, en el documento, en .pdf, "Uso creativo de la escuadra y cartabón" se ilustran otras posibilidades diferentes a las que se implementan con esta aplicación.

Por otra parte, ya he tratado anteriormente sobre los que yo denomino "geofraccionadores" y "pizarras geométricas". Varios modelos de geofraccionadores los incluyo en "Kit internivelar para la enseñanza-aprendizaje de fracciones, decimales y porcentajes"...

"Hexágono regular modular" es una aplicación dedicada al favicon de este blog, que no es sino un hexágono regular formado por 36 módulos congruentes que son "cartabones" (triángulos rectángulos escalenos de ángulos 30º, 60º y 90º). He querido ofrecer aquí modelos interactivos del mismo desde dos perspectivas diferentes: utilizándolo como pizarra geométrica (en este caso las figuras se obtienen coloreando números enteros de módulos) y como geoplano (las figuras se obtienen pulsando ordenadamente sobre los puntos sensibles que son vértices o nodos de la malla triangular correspondiente).

Dado que el  Planteamiento de pequeñas investigaciones en contextos numéricos, geométricos y funcionales, valorando su utilidad en las predicciones... es un contenido que se repite en todos los ciclos de Primaria, he enfocado el diseño de "Hexágono regular modular" de manera que ofrezca un gran potencial didáctico, para favorecer que los/as alumnos/as investiguen, para facilitarles que descubran y creen...

Lo he experimentado con mis alumnos/as de 4º de Primaria y, sencillamente, les encanta. Han realizado todos los retos propuestos sobre división de figuras en partes congruentes, han diseñado una buena cantidad de rompecabezas hexagonales,...y se han divertido buscando todos los tamaños de rectángulos posibles...


No es difícil constatar algunas características esenciales presentes en la práctica totalidad de las aplicaciones de DIDACTMATICPRIMARIA:
  • La integración de las fases manipulativa, gráfica y simbólica. Ello se traduce en manipulaciones  realmente ágiles, eficaces, ordenadas y limpias (sin elementos de distracción) basadas en la excelente interactividad de los modelos gráfico-dinámicos sobre los que se actúa. Esto, indudablemente, funciona y  favorece que se manipule en cualquier nivel o etapa.
  • La posibilidad de llevar a cabo una manipulación libre orientada. Las manipulaciones libres son manipulaciones “aumentadas” en el sentido de que se da alguna información matemática adicional y dinámica (por lo general de naturaleza numérica  -simbólica-) que es relevante para reflejar las acciones realizadas con los modelos y/o sus consecuencias… Se contempla la manipulación libre como un espacio para la introducción lúdica de conceptos, para la expresión y fomento de la creatividad del alumnado, para favorecer el aprendizaje autónomo y semidirigido, para la exploración y el descubrimiento, para la investigación… Pero no se trata sólo de que el alumnado explore, sino de facilitar, también, que lo haga el profesorado, que pueda proponer sus propias actividades y retos creando el necesario conflicto cognitivo acorde con el nivel de sus alumnos/as… Se prestan así, de una manera especial, al aprendizaje entre iguales informal. Contemplar la manipulación libre orientada dota a las aplicaciones de una gran versatilidad para el profesorado  y de un mayor potencial didáctico…No se trata de aplicaciones lineales en las que todas y cada una de las actividades están prefijadas. Por el contrario, permiten volver a ellas numerosas veces, con diferentes grados de profundización.
  • La enorme profusión y diversidad de modelos gráfico-dinámicos diferentes puestos al servicio de un enriquecimiento real de las clases de matemáticas. Esto repercute directamente en una más rica concepción del área,  tanto por parte de docentes como de alumnos. Se diversifica la naturaleza del quehacer matemático del alumno (cosa tan necesaria ante la profusión de aplicaciones matemáticas excesivamente fragmentadas basadas en la simple asociación, o en la respuesta múltiple, o en la simple introducción de datos y corrección de respuestas) permitiendo que que el alumnado trace, coloree, desplace, gire; que exprese, que calcule, que compare, que mida, que corte, que pegue, que visualice, que experimente, que transforme, que construya y cree, que investigue... 
  • Por otra parte, la riqueza de modelos gráfico-dinámicos es una importante vía para la introducción de innovaciones  en el currículo de matemáticas, una forma de demostrar que las aplicaciones_TICs en matemáticas pueden ofrecer nuevos escenarios con nuevas posibilidades (corrección -autorregulación del proceso-, interactividad, generación aleatoria y/o pseudoaleatoria,  simulación, experimentación, mayor riqueza y dinamismo en los lenguajes de presentación, mayor variedad y control en las fases intermedias de resolución, mayor variedad en la forma de resolver un problema, etc...)














15 octubre, 2015

Muñecos articulados y marioneta. Geometría del cuerpo humano.





El razonamiento espacial actúa sobre figuras geométricas (tridimensionales y planas) por medio de operaciones básicas entre las que destacan el análisis  (descomposiciones diversas de un mismo todo) y la síntesis (combinaciones diferentes de las mismas partes; las mismas partes constitutivas del muñeco articulado pueden combinarse, distribuirse u organizarse de maneras diferentes originando posturas diferentes) teniendo en cuenta la orientación espacial y las posiciones de las figuras en el espacio.

“Muñecos articulados y marioneta” reproduce la geometría esencial del cuerpo humano, del esquema corporal, favoreciendo el análisis y la síntesis para desarrollar tanto un pensamiento convergente (las diferentes partes se organizan para configurar un mismo todo- un mismo muñeco articulado- como divergente (las mismas partes – diferentes segmentos o piezas del muñeco articulado- se organizan formando muñecos que son diferentes –diferentes posturas-), fundamentales  para el pensamiento inventivo y creativo.

Los retos propuestos ponen en juego la observación sistemática, la percepción analítica y la comparación (similitudes y diferencias, grado en que una parte es diferente a su homóloga…).

“Muñecos articulados” presenta menos dificultad que “Marioneta”. A su vez, en “Muñecos articulados” se han contemplado dos niveles de dificultad (cada uno de ellos con 30 retos diferentes).  La diferencia entre una parte del muñeco que hay que modificar (girándola) y su homóloga en el muñeco estático propuesto– estado final al que hay que llegar- viene dada por un giro de un determinado valor. Para facilitar la correcta y exacta resolución de los retos propuestos, los giros posibles toman valores discretos (amplitudes angulares que son múltiplos de 30°, en el nivel 1, y múltiplos de 15°, en el nivel 2).


Dada la importancia de la figura humana para comunicar (acciones, sentimientos, …), su frecuente uso visual-plástico-artístico en nuestra sociedad y teniendo en cuenta, también, su adecuación al estadio evolutivo del dibujo en niños/as de Primaria, esta aplicación tiene un valor formativo interdisciplinar indudable. Esto la hace especialmente adecuada para su inclusión en UDIs interdisciplinares (Matemáticas-Educación Física-Plástica-Comunicación...)

Algunas ideas: Reproducir, sobre cartulina, las diferentes partes de un muñeco articulado similar al de esta aplicación. Hacer copias suficientes (al menos un muñeco articulado para cada alumno/a). Colorear los muñecos atendiendo a diferentes criterios y unir sus piezas de manera que permitan el giro de cada una de ellas. Elaborar luego, colectivamente, un gran mural que pueda servir para decorar un pasillo o un aula aportando cada alumno/a un muñeco con una postura diferente a la de los demás...

También se podría acompañar cada muñeco de un rótulo indicando la acción u emoción que cada postura sugiere a los/as alumnos/as, después de realizar un torbellino de ideas y consensuar la más adecuada para cada muñeco...

18 septiembre, 2014

Los polígonos modulares en la enseñanza-aprendizaje de la Geometría en la Etapa Primaria.

De manera análoga a como los mismos átomos se combinan de maneras diferentes para crear moléculas diferentes, podemos utilizar polígonos sencillos idénticos o congruentes (misma forma y tamaño) como módulos unitarios (átomos) para combinarlos y formar múltiples polígonos modulares (moléculas) diferentes.

Los polígonos unitarios son ya, en sí mismos, modelos matemáticos. Se utilizan para construir nuevos modelos más complejos. Los polígonos modulares favorecen la captación de relaciones de reunión y multiplicidad facilitando enormemente el desarrollo de las capacidades de los escolares para analizar y comprender situaciones relacionadas con el universo de las formas, razonar sobre ellas, identificar los conceptos y procedimientos aplicables, generar soluciones y expresar los resultados de forma adecuada. Como valor transversal se persigue apreciar la armonía y belleza que generan las formas geométricas así como valorar el cuidado y la precisión necesarios para la obtención de formas más armoniosas.

En la siguiente propuesta "Uso creativo del cartabón y la escuadra", dirigida a alumnos/as del tercer ciclo de Primaria, se utilizan triángulos cartabón y triángulos escuadra como módulos unitarios (realizados sobre cartulina o papel) para formar nuevos modelos más complejos. 

Se ilustra la utilización de los polígonos modulares como material para hacer medidas directas o indirectas permitiendo comparar y cuantificar longitudes, perímetros, áreas y amplitudes angulares… ; para el descubrimiento y comprensión de conceptos (polígonos de igual área con diferente perímetro, o viceversa; polígonos con un eje de simetría, polígonos cóncavos y convexos, ángulo central, interior y exterior, semejanza, congruencia, escala, concavidad/convexidad,…);  como material con aplicación funcional (diseños decorativos, …)

Además, los polígonos modulares formados con triángulos cartabón ( o con triángulos escuadra) permiten generar interesantes situaciones problemáticas no rutinarias, realizar comprobaciones y demostraciones informales (el valor de la suma de los ángulos interiores de cualquier cuadrilátero modular formado es 360º, un cometa tiene un eje de simetría axial o bilateral, todo hexágono regular se puede fraccionar en 6 triángulos equiláteros congruentes, sólo las diagonales de un hexágono regular que pasan por su centro son ejes de simetría del mismo, …) y sirven como soporte visual para la comunicación y argumentación.

Teniendo en cuenta el grado de complejidad de las tareas (reproducciónconexión y reflexión), la mayor parte de las tareas que se proponen inciden en los dos últimos grados de complejidad (puesto que se utilizan con mayor frecuencia contextos matemáticos que otros más familiares, se incide continuamente en la interpretación y explicación de modelos en tareas que siempre requieren de comprensión y reflexión, se provoca el uso de diferentes estrategias de resolución de problemas no rutinarios, se busca la creatividad, las producciones del alumno como ejemplificación y uso de conceptos, la relación de conocimientos, la justificación y generalización de resultados…)

La propuesta contiene gran cantidad de modelos-diseños que sirven de soporte para la reflexión, argumentación y comunicación. Los modelos-diseños colectivos en tamaño gigante que se proponen encierran numerosas relaciones geométricas interesantes por una parte. Por otra, tienen un claro interés plástico y visual. Pueden ser aprovechados, pues, como elementos para interdisciplinar las áreas de Matemáticas y Artística
  



Un complemento ideal de esta propuesta lo constituye esta otra propuesta interactiva anteriormente publicada en este blog:


(Ver a pantalla completa)