02 abril, 2017

Equivalencias entre modelos gráficos en la resolución de problemas aritméticos. El modelo de barras.

Equivalencias entre modelos gráficos en la resolución de problemas aritméticos. El modelo de barras.



Esta aplicación pretende poner de manifiesto la utilidad del "MODELO DE BARRAS" (Método Singapur) como estrategia heurística para la modelización de problemas aritméticos. 

Los gráficos estáticos que se ofrecen - y que en su mayoría se corresponden con problemas aritméticos no verbalizados- pueden ser utilizados por los docentes como instrumento de aprendizaje del "MODELO DE BARRAS a la par que se trabaja la equivalencia entre representaciones gráficas. Por ello no se dan las soluciones. Se pretende que sean los/as alumnos/as quienes pongan enunciado a la situación representada y, a su vez, expresen las relaciones, los argumentos y razonamientos que lleven a determinar cuantitativamente las variables que aparecen (con lo cual se resuelve el problema representado).

Pero esta aplicación es, sin duda, un instrumento para la formación del profesorado. Ilustra la manera en que el "MODELO DE BARRAS es adecuado para la modelización de problemas aritméticos que algebraicamente se corresponden con ecuaciones de primer grado, con sistemas de dos ecuaciones de primer grado con dos incógnitas y con ecuaciones de la recta. NO HAY MODELIZACIÓN MATEMÁTICA SI NO SE REPRESENTA O EXPRESA UNA ECUACIÓN, UNA INECUACIÓN, UN SISTEMA DE ECUACIONES,... No he pretendido ser exhaustivo. Creo que es más que suficiente para ver su utilidad.

No cabe duda, como se puede apreciar en la aplicación, que permite representar perfectamente, y con relativa sencillez, las relaciones numéricas implicadas en cada uno de los ejemplos-problema, y que puede hacerse corresponder con el modelo "BALANZA/S EQUILIBRADA/S" (muy utilizado en DidactmaTICprimaria ) , que podría presentarse de manera más esquemática con barras en cada platillo...

Conviene tener en cuenta el sentido de esta aplicación en la enseñanza/aprendizaje de la utilización del modelo de barras. Lo que aquí se propone es la correcta interpretación del modelo ya realizado. EN OTRO NIVEL DE MAYOR DIFICULTAD SE SITÚA LA REALIZACIÓN DEL MODELO GRÁFICO, DESDE CERO, POR PARTE DE LOS/AS ALUMNOS/AS PARA MODELIZAR Y RESOLVER UN PROBLEMA ARITMÉTICO. 

En los dos post anteriores ya he presentado variantes interactivas del modelo de barras, pero estoy trabajando en un modelo interactivo lo más general y sencillo posible... sobre todo, una vez constatada la insuficiencia de los materiales impresos que desarrollan este modelo. Hay buenas versiones digitales  del modelo de barras. No obstante, las más generales me parecen complejas y las más simples no demasiado ágiles:
Modelos interactivos "Thinking Blocks", de Math Playground



No cabe duda del potencial del  'modelo de barras' para la modelización de problemas aritméticos. Aunque esta modelización (representación gráfica) es ya una actividad matemática relevante en sí misma, el profesorado debe asegurarse de que la utilización del modelo favorezca, en los/as alumnos/as, la determinación de las operaciones que intervienen en la resolución del problema.


Post relacionados con éste:





No hay comentarios :

Publicar un comentario

Didactmaticprimaria agradece tus comentarios