INVESTIGACIÓN Y DESARROLLO de CONTENIDOS EDUCATIVOS DIGITALES MULTIMEDIA para la enseñanza-aprendizaje de las MATEMÁTICAS (Infantil-PRIMARIA y atención a la diversidad en ESO) y LENGUA en PRIMARIA. Por una enseñanza-aprendizaje de la matemática que integre las TICs con fundamento didáctico, basada en el APRENDIZAJE POR DESCUBRIMIENTO, la ATENCIÓN A LA DIVERSIDAD, el análisis crítico del currículo, el desarrollo de competencias y el fomento de LA CREATIVIDAD.
Saber Evaluar de manera fundamentada y coherente Contenidos Educativos Digitales Multimedia para el área de Matemáticas (CEDMMat) es una competencia_TIC cada vez más necesaria para el profesorado dada la abundancia y diversidad de estos materiales didácticos en la nube y el cada vez más creciente uso de los mismos para el desarrollo del currículo de Matemáticas (o para la adquisición de competencias matemáticas, si se prefiere...). Sobre todo porque ningún CEDMMat es neutro. Por el contrario, refleja un posicionamiento concreto en relación con la enseñanza-aprendizaje y conlleva, de manera más o menos explícita, una determinada cultura del aprendizaje.
Ello requiere, a mi juicio, contextualizar adecuadamente dicha evaluación:
El conocimiento de los mitos, promesas y realidades de las TIC en la Sociedad nos ayuda a posicionarnos con realismo frente a estas tecnologías, a alejarnos de posturas extremas como la tecnofilia y la tecnofobia.
Identificar y diferenciar los usos (instructivos/constructivos) de las TIC nos ayudará, como docentes usuarios, a elegir CEDMMat que sean más coherentes con el proyecto educativo de nuestro centro y nos ayuden a desarrollarlo. Para los desarrolladores de CEDMMat el uso constructivo de las TIC supone una meta que debe orientar nuestro trabajo creativo exigiéndonos, a la par, superación, innovación,...
El modelo TPACK (Technological Pedagogical Content Knowledge) es ideal para valorar el grado de Integración de los conocimientos tecnológico-pedagógicos sobre el currículo de Matemáticas. Ni que decir tiene que hablamos de un currículo de Matemáticas bien entendido y fundamentado; amplio, rico, relevante y acorde con los principios y estándares para la educación matemática consensuados internacionalmente; que tenga en cuenta las competencias matemáticas y sus niveles de desarrollo...
Resulta interesante analizar el papel que juegan los CEDMMat (materiales virtuales o digitales) en la historia de los materiales didácticos, sus analogías y diferencias con los materiales analógicos...
Brindo aquí la presentación interactiva que he utilizado para la impartición de un taller homónimo en las XXXII Jornadas de la Sociedad Canaria de Profesores de Matemáticas "Isaac Newton". Creo que refleja la dificultad de la tarea a la par que ilustra vías y procedimientos para realizarla de manera profesional...
Creo que merece la pena reproducir en este blog la videoconferencia "Usos constructivos e instructivos de las TIC en el aula" impartida por Jordi Adell el 14 de agosto de 2013, en IBERTIC - OEI - Buenos Aires.
La crítica fundamentada que hace del uso mayoritario de las TIC para presentar los contenidos y evaluar de manera simplona su "adquisición" , debería hacernos reflexionar, sobre todo a profesores usuarios de las mismas y a profesores desarrolladores de contenidos, sobre los objetivos que perseguimos con el uso de las TIC en el aula.
Resumen de la conferencia:
"El mercado de las TIC en educación está comenzando a ofrecer productos y servicios, y una manera de entender su integración y uso, acorde con las prácticas de la mayor parte del profesorado. Eso significa que estamos asistiendo a propuestas muy poco innovadoras desde el punto de vista didáctico, que reproducen estrategias y prácticas tradicionales y conservadoras, centradas en el docente y el currículum y que desaprovechan completamente todo el potencial transformador de las TIC. Dichas prácticas, además, incrementan el grado de vigilancia y control de la "performance" de los estudiantes y se alinean con la corriente más neoliberal y conservadora de la evaluación sumativa constante y supuestamente objetiva de los estudiantes. Nuevos desarrollos, como las plataformas de aprendizaje "adaptativo", que se vislumbran en un futuro a medio plazo, no solo reforzarán, en nombre de una supuesta "personalización", el aprendizaje entendido como reproducción de contenidos, sino también desprofesionalizarán a los docentes más si cabe que las tecnologías tradicionales como los libros de texto. Las TIC se usan para presentar contenidos y evaluar la retención de los y las estudiantes.
Depende de las autoridades educativas y, sobre todo, de los docentes, que dichas tendencias se impongan en las aulas o que usemos las TIC de una manera más creativa, centrada en los estudiantes, como herramientas no solo para presentar los contenidos y evaluar de manera simplona su "adquisición" o para empoderar a nuestros estudiantes ayudándoles a desarrollar las competencias necesarias para ser profesionales innovadores y ciudadanos críticos y solidarios en una sociedad de la información que es compleja y cambiante, pero cada día más desigual e injusta".
Por otra parte siempre me complace encontrar a alguien (más si es un referente internacional, como Jordi Adell) que al igual que yo sospeche de los principios pedagógicos que aparentemente sustentan las plataformas de aprendizaje adaptativo, más aún cuando se trata de empresas startup que buscan obtener grandes beneficios en poco tiempo, casi siempre con recursos de terceros. En la videoconferencia se menciona la famosa plataforma Knewton.
Algunas opiniones sobre las tecnologías de aprendizaje adaptativo:
"Las tecnologías de aprendizaje adaptativo permiten adaptar la presentación de materiales educativos de acuerdo con las necesidades de aprendizaje de los estudiantes, según los datos e información que van aportando sus respuestas a preguntas y tareas. En cierto sentido, recuerdan a la instrucción programada y las máquinas de enseñar de Skinner, pero no es lo mismo; el objetivo no es tanto automatizar como personalizar las actividades de aprendizaje y convertir al estudiante en participante activo que pueda tomar decisiones con los datos que aporta la analítica de sus hábitos y ritmos de aprendizaje, conocimientos y dificultades, con el fin de poder mejorar su rendimiento o incluso prevenir el posible fracaso y remediarlo antes de que ocurra. La diferencia está en la cantidad de datos que se procesan y los algoritmos utilizados para analizar información y actividad con fines de asistencia individualizada. " (Contínua...se habla, también con cierta profundidad de la plataforma Knewton)
La imagen muestra una clasificación de los recursos didácticos con los que cuenta la plataforma (vídeos y ejercicios interactivos que, en mi opinión personal, no destacan precisamente ni por su innovación ni por proponer retos relevantes a los/as alumnos/as).
¿Les suena una visión empobrecida del currículo de Matemáticas centrado casi exclusivamente en el bloque de Números y Operaciones?
La imagen siguiente corresponde a un vídeo explicando cómo multiplicar un número por otro de un sólo dígito (algoritmo tradicional de la multiplicación, tal y como lo hacían los bisabuelos de nuestros abuelos). Los ejercicios interactivos que se proponen (que Smartick siempre denomina problemas) se caracterizan por la escasa interactividad y poca divergencia ...No se atisba el desarrollo de la creatividad ni la innovación curricular...
Así, por ejemplo, buscando una tarea donde se propone un modelo con cierta interactividad, podemos observar en la imagen anterior, que no se trata de un modelo dinámico, que los gatitos no pueden desplazarse para agruparlos de otra manera que haga más patente la relación 3/5; que se da, además, la estrategia de resolución del problema propuesto, la acción que el/la alumno/a ha de realizar (<<Tienes que seleccionar "3 de cada 5">>); que la tarea propuesta predispone a dar el resultado mediante un simple recuento. Por lo tanto, ni se puede reforzar visualmente la relación 3/5 ni se puede abordar haciendo 5 partes iguales y considerando 3... (Seguro que el/la lector/a sabría encontrar fácilmente aplicaciones gratuitas con un mejor tratamiento didáctico de la fracción de un número).
Me resulta difícil creer y comprender que detrás de estos recursos, bastante "enlatados" a mi juicio, haya algoritmos inteligentes basados en Big data que recolecten información sobre los hábitos de aprendizaje, conocimientos, debilidades y fortalezas de cada usuario para crear un plan de estudios a la medidaque ponga énfasis en las áreas donde los alumnos tengan más dificultades para adaptarse a la forma y ritmo de aprendizaje de cada uno... ¿Significaría esto que la tecnología podría implementar la atención a la diversidad igual o mejor que el profesorado? Jordi Adell alerta, con cierta ironía, sobre el peligro de que los/as maestros/as podamos un día ser desbancados por plataformas de este tipo...Pienso que una plataforma así más bien libera a un sector de padres/madres de la tarea de ayudar a sus hijos/as con los deberes, convirtiéndose en un "profesor particular". ¿Se imaginan un mundo en que los docentes fuesen sustituidos por algo tan frío como plataformas de aprendizaje adaptativo y además hubiese que pagar por tener acceso a un aprendizaje fundamentalmente instructivo?
Me resulta sorprendente que este tipo de plataformas acaparen tantos millones de usuarios cuando, sin ir más lejos, son muchísimos los blogs que ofrecen de manera gratuita contenidos con enfoque análogo; o con más y mejores recursos con mayor fundamentación pedagógico-didáctica; muchos los que proponen tareas de matemáticas más relevantes... Forzosamente, imagino, deben confluir intereses mercantiles de diferentes empresas que saben que un agresivo marketing hará el resto...¿O será que en realidad esto nos parece más que suficiente a la mayoría de los padres, madres y docentes? ¿O será que refleja fielmente la cultura del aprendizaje de la gran mayoría de la población? ¿O será, incluso, que la cultura del aprendizaje asociada a estas plataformas es la que impera en la gran mayoría de los centros docentes?
¿Y qué podríamos decir, por ejemplo, de la plataforma adaptativa de matemática PAM?
Son escasísimos los contenidos educativos digitales multimedia que tratan aspectos topológicos básicos.
Muchos recordamos, aunque de manera vaga e indefinida, que una vez en la escuela se nos propuso resolver el reto de la “casita” (o “sobre de carta” si se prefiere). Se trataba de realizar el dibujo de un solo trazo, sin levantar el lápiz del papel y sin dibujar un mismo segmento dos veces…
Probablemente una gran mayoría de personas, incluso una mayoría de docentes, no hayamos sido conscientes de los momentos de acercamiento a cuestiones que tienen relación con esta rama de la geometría denominada topología, sobre todo de los aspectos lúdicos de la misma.
"Casita" o "sobre de carta"
El sencillo reto de la “casita” enlaza directamente con el famoso e histórico problema de los puentes de Königsberg, con el matemático Euler, con el nacimiento de la topología y de la potente teoría de grafos.
La aplicación que aquí ofrezco, organizada en torno a cuatro secciones o apartados, hace posible de manera experimental, creativa y lúdica, que comprender y argumentar razonadamente sobre el problema de los puentes de Königsberg (y variantes del mismo) así como crear y dar respuesta a otros problemas análogos más complejos sea una tarea de matemáticas relevante al alcance de niños de Primaria, a la par que los familiariza con aspectos básicos de la topología.
En el apartado RETOS se ilustra de manera dinámica lo que se entiende por “recorrido de un solo trazo” y se propone, a modo de retos, una veintena de figuras que pueden ser recorridas de un solo trazo, cada una de ellas de múltiples maneras (aquí soluciones). Se trata, pues, de una actividad de naturaleza divergente, creativa… El ordenador permite comprobar lo correcto o no del trazado realizado por el usuario en cada caso, es decir, de la solución concreta dada por él. Los retos propuestos permitirán intuir y descubrir la existencia de ciertos patrones o regularidades. Así, por ejemplo, la aplicación redibuja el trazado realizado por el usuario en el mismo sentido que éste lo hizo y en sentido contrario evidenciando de manera visual y dinámica que toda solución es doble. Pronto el usuario descubre que unas figuras tienen solución comenzando en uno cualquiera de sus vértices (y terminando en el mismo) y otras, en cambio, exigen comenzar y terminar en vértices concretos. ¿Por qué?
Las veinte figuras propuestas (de diferente dificultad)
Comprobación de un trazado solución correspondiente a la figura propuesta número 9
Trazado de una solución (1-7-2-8-3-4-9-5-6-10-7-6-1-5-4-1-3-2-1)
En el apartado SOLUCIONES el usuario puede descubrir la naturaleza combinatoria de las múltiples soluciones de cada una de las figuras (y de las que son equivalentes topológicamente a ella); se analizan todas las soluciones posibles de las figuras más sencillas propuestas; se muestran de manera interactiva y argumentada varias soluciones de cada una de las figuras propuestas (como adelanto de la TEORÍA) y se utilizan los números para codificar soluciones.
El apartado TEORÍA se aprovecha para introducir e ilustrar dinámicamente conceptos topológicos básicos relacionados con los retos propuestos y sus soluciones, tales como: figuras topológicamente equivalentes, grafo, grafos topológicamente equivalentes, vértices o nodos, segmentos o arcos, regiones, orden de un nodo, nodo par, nodo impar,…
También se utiliza el apartado TEORÍA para llevar al alumno al descubrimiento o comprobación de unos cuantos resultados teóricos sencillos que son expresión de las regularidades que han podido ser experimentadas y que permiten determinar si un grafo va a tener o no solución. Se muestra de manera dinámica una familia de grafos generados “de un solo trazo” con un espirógrafo configurable, se pregunta sobre las características comunes de estas figuras así generadas; se muestran colecciones de figuras para que el usuario determine si tienen o no solución, etc... Esta teoría está perfectamente al alcance de niños/as de 9-10 años en adelante y es la que permitirá comprobar que el originario problema de los puentes de Königsberg no tiene solución.
Para completar aspectos no tocados en esta aplicación o bien para verlos desde otro punto de vista, se enlaza con algunas aplicaciones para Educación Primaria correspondientes al Proyecto Canals (de Hernán Darío Alzate: "Redes I", "Redes II" y "Topología" ; de Diego Luis Feria Gómez: "Posiciones relativas entre líneas" ) a vídeos de YouTube sobre esta temática y a diferentes documentos digitales online.
"Los siete puentes de Königsberg"
En el apartado TALLER el usuario puede crear sus propios grafos colocando nodos y arcos en la zona de diseño tal y como desee. El ordenador evalúa si el grafo realizado tiene o no solución y por qué… Además sugiere y permite la simulación o modelado del problema de los puentes de Königsberg y variantes del mismo…
Por último, y esto puede que sólo interese a desarrolladores de contenidos educativos digitales, la aplicación muestra un amplio abanico de maneras diferentes de abordar el trazado interactivo de líneas rectas y curvas...
Acabo de incluir estas ocho aplicaciones mías inéditas, diseñadas en 2005 y 2006, en el apartado Manipulables_Virtuales_Matemáticas_V de este blog. Ha sido una suerte encontrar los archivos de diseño de las mismas, que ya daba por perdidos. Todas ellas formaban parte de un proyecto de Enriquecimiento Cognitivo que no llegué a acabar. A partir de los archivos de edición, les he realizado algunas mejoras y actualizaciones para que estén en consonancia con la estética y calidad general de las aplicaciones que se ofrecen en DIDACTMATICPRIMARIA.
No todas las aplicaciones (manipulables virtuales) que se ofrecen en Manipulables_Virtuales_Matemáticas_V tendrían cabida, de manera estricta, dentro de los bloques de contenidos tradicionales de la Matemática de Primaria. No obstante, son Instrumentos Interactivos para el Enriquecimiento Intelectual, Instrumentos para el Desarrollo de Habilidades Cognitivas, ... e inciden en aspectos esenciales de la naturaleza de la actividad matemática y del desarrollo de la inteligencia lógico-matemática.
Interesantísmo juego para favorecer la aplicación de estrategias personales para mejorar la memoria inmediata o retentiva así como la imaginación creativa. Presenta cinco niveles o grados de dificultad de manera que sea un reto para personas de cualquier edad sin necesidad de conocimientos previos. Para cada nivel, se puede optar por trabajar con cartulinas-animal, cartulinas-palabra o cartulinas-grupo de palabras, lo que aporta interesantes matices y diversidad a estas aplicación. PDI: sí.
Una atractivo juego que va más allá de los tradicionales y rutinarios test-memo (búsqueda de parejas) permitiendo el desarrollo de estrategias personales para mejorar la memoria inmediata así como la graduación de la dificultad de la prueba. De interés para cualquier edad y nivel. Lleva registro del porcentaje de eficacia con que se ha realizado.PDI: sí.
Aplicación inspirada en la lección 6ª (" La prueba de hipótesis ") de la serie I (FUNDAMENTOS DEL RAZONAMIENTO ) de la publicación del Grupo de Investigación-trabajo sobre el PROYECTO DE INTELIGENCIA "HARVARD" (PIH) en el Centro de Profesores de Leganés (Madrid), coordinado por Miguel Megía Fernández.
Manual del Profesor. Educación Secundaria Obligatoria. Editorial CEPE (Ciencias de la Educación Preescolar y Especial).
No se utiliza ningún nombre ni imagen citados en la documentación anterior. La lección mencionada ha sugerido la presente adaptación / interpretación interactiva para la Etapa Primaria (reconocimiento de atributos, clasificación, búsqueda de intruso, etc...). Imágenes diseñadas por el autor a partir de la fuente de símbolos vectoriales "creatures".PDI: sí.
Aplicación diseñadas para los primeros cursos de Primaria para favorecer el descubrimiento de relaciones mediante 50 analogías con figuras de diversa índole. Se entiende por analogía una proporción de igualdad de cuatro términos - cuatro figuras en este caso- en los cuales el segundo se relaciona con el primero como el cuarto lo hace con el tercero (dobles flechas horizontales o bien dobles flechas verticales en la imagen anterior). Se considera que la analogía está aún mejor definida cuando los términos primero y tercero se relacionan de la misma manera que lo hacen el segundo y el cuarto.
Las relaciones implícitas en las figuras propuestas se basan en variables muy diversas: forma, color, tamaño, orientación, relaciones parte/todo, relaciones de composición /fraccionamiento, cantidad, etc...pudiendo estar las figuras relacionadas de manera análoga en base a una, dos o más variables...PDI: sí.
Matriz_Memo. Otra forma no rutinaria de abordar el desarrollo de estrategias personales para mejorar la memoria inmediata así como la graduación de la dificultad de la prueba. De interés para cualquier edad y nivel. Lleva registro del porcentaje de eficacia con que se ha realizado.PDI: sí.
Para Educación Infantil y Primer Ciclo de Educación Primaria. 12 puzles-silueta de dificultad creciente. Se puede mostrar u ocultar la silueta de cada figura a completar. Lleva registro del porcentaje de eficacia con que se ha realizado. PDI: sí.
Puzles_16. Colección de 10 imágenes artísticas sobre el mundo de los animales. Cada imagen está dividida en 16 cuadrados de idéntico tamaño (16 piezas del puzle) que pueden ser barajadas y luego recolocadas para resolver el puzle. PDI: sí.
He aquí un estupendo recurso, bien diseñado y que apuesta por la experimentación en matemáticas. Te aconsejo que hagas un recorrido por esta exposición interactiva.
La imagen de la izquierda corresponde a la aplicación "policubos" que se ofrece en este blog. Pone de manifiesto correspondencias entre diseños figurativos planos formados por cuadrados y medios cuadrados (escuadras) y diseños figurativos tridimensionales formados con cubos y mitades de cubo. La aplicación ayuda a intuir y comprender el paso del plano (2D) al espacio tridimensional (3D) abordando, a la par, el diseño creativo...
En la aplicación "policubos II" se profundiza en el diseño libre con cubos y mitades de cubo con diferentes orientaciones espaciales.
Aplicaciones como "Copiar figuras" son ideales para el desarrollo de la percepción analítica que, como ya indiqué en un post anterior, es a la geometría lo que la comprensión lectora es a la lectura. Esta percepción analítica está favorecida por la referencia visual de la cuadrícula e implica la interiorización progresiva de aspectos topológicos, métricos y geométricos que no se pueden obviar. Ya en otros post he tratado con profundidad el potencial didáctico de cuadrícula y tramas de puntos para abordar múltiples contenidos geométricos a lo largo de toda la etapa Primaria: "Regularidades en el plano. Mosaicos, cenefas, celosías,..", "Tramas de puntos, geoplanos y pizarras geométricas",...
El libro "Materiales para construir la geometría" (de Claudi Alsina, Carme Burgués y Josep Mª Fortuny. Colección "Matemáticas: cultura y aprendizaje", número 11. 1988) comienza con un párrafo que yo he citado ya en diferentes sitios que, a mi juicio, orienta la didáctica de la Geometría en la escuela y en el que creo firmemente:
"Vivir la Geometría en la escuela puede ser una experiencia feliz si basamos su aprendizaje en actividades constructivas, sensibles y lúdicas. De todas las disciplinas matemáticas la Geometría es la que mayores posibilidades ofrece a la hora de experimentar, mediante materiales adecuados, sus métodos, sus conceptos, sus propiedades y sus problemas. Es por ello que la enseñanza geométrica no debe sucumbir a las limitaciones formales, simbólicas y algebraicas de los conocimientos matemáticos: será precisamente es este primer estadio de sensibilidad donde el tacto, la vista, el dibujo y la manipulación permitirán familiarizar al alumno con todo un mundo de formas, figuras y movimientos sobre el cual asentar posteriormente los modelos abstractos"
Pero, además, a través de las formas, figuras y movimientos el alumno se adentra en un terreno de estética, de belleza,...sensaciones que, casi sin excepción, a todos nos produce esa especial perfección y armonía que percibimos en múltiples formas geométricas.
No cabe, duda, por tanto, de que el tratamiento de la geometría, sobre todo de la geometría construida por los alumnos, incide de lleno en la educación en valores: si bien el reconocimiento y sentimientos de la armonía y belleza en relación con sus propias producciones geométricas tiene una componente subjetiva (y por tanto hay que desarrollar también esa sensibilidad) para el alumno, por otra parte éste asume con facilidad que el grado de exactitud, armonía y belleza tiene una componente objetiva que está directamente relacionada con su interés y esfuerzo por lograr perfección en el trazado y construcción de formas, ...
No cabe duda de que las TICs, en conjunción con multitud de software específico de geometría dinámica, están facilitado enormemente una visión creativa, dinámica e interactiva de la Geometría que no era posible, o al menos muy difícil, hace relativamente pocos años. Este hecho trae consigo, de manera ineludible, nuevos enfoques e innovaciones del currículo de geometría, también a nivel elemental.
Pero en Primaria no resulta fácil acercar a los alumnos/as el mundo de lo tridimensional, mediante aplicaciones virtuales, de manera que suponga para ellos una experiencia que conlleve, además, aprendizaje relevante. No al menos en la misma medida que para las figuras planas. No resulta nada fácil, por ejemplo, realizar diseños tridimensionales con Geogebra o algún otro software parecido. ¿Qué aplicaciones virtuales permiten a alumnos/as de Primaria la composición/descomposición de cuerpos tridimensionales? Nos tenemos que conformar con facilitarles la visualización de poliedros y estructuras poliédricas, incluso mostrarles poliedros que se transforman en sus correspondientes desarrollos planos, y viceversa; pero poco más...
He aquí algunas de las aplicaciones que se ofrecen en este blog que permiten trabajar diferentes aspectos de sólidos tridimensionales:
A pesar de lo variado de estas aplicaciones y del indudable interés didáctico que supone la manipulación de modelos ya construidos, es necesario proponer a nuestros alumnos/as otras actividades "analógicas", de índole constructiva, manipulativa y lúdica que hagan uso de los procedimientos fundamentales de la Geometría: el dibujo y la construcción de modelos. Actividades que los ayuden a desarrollar y adquirir dominio en el trazado, doblado, recortado, pegado, construcción, etc; que desarrollen actitudes de perseverancia y afán de superación...
En el siguiente vídeo recojo algunas de las actividades de este tipo que he propuesto yo a alumnos/as de 5º y 6º. Podéis consultar, también, "Origami modular en Primaria". Espero que las encontréis interesantes y sugerentes:
Quiero acabar este post saltando de lo básico de esta temática, a lo más avanzado . Lo que nos muestra el siguiente vídeo es impresionante, alucinante,...
Inspirado por la división celular, Michael Hansmeyer escribe algoritmos que diseñan formas y figuras con millones de facetas extremadamente fascinantes. Ninguna persona podría delinearlas a mano, pero son construibles, y podrían revolucionar la manera en la que concebimos la forma arquitectónica.
Tal y como anuncié en el post “Fracción de un número y estimación de fracciones sobre la recta numérica” (19 de marzo), he estado preparando una macroaplicación sobre fracciones que al final ha tomado la forma de este “KIT INTERNIVELAR PARA LA ENSEÑANZA-APRENDIZAJE DE FRACCIONES, DECIMALES Y PORCENTAJES”. Este trabajo, que me ha ocupado más tiempo del que yo pensaba, ha sido el responsable del bajo número de nuevos post publicados en este blog desde esa fecha. Todo ello a pesar de que se nutre de algunas aplicaciones preexistentes que han sido revisadas, adaptadas y mejoradas ( como es el caso de la resolución de problemas con fracciones asistida por ordenador). Además se han añadido otras nuevas para hacerlo más completo y útil a su propósito. Aún así se encuentra en “fase beta” ya que sus apartados son susceptibles de ampliación…
A pesar de ello, como puede comprobar el/la lector/a, es profuso en modelos interactivos que se ponen tanto al servicio del profesorado (para apoyar sus explicaciones) como del lado del alumnado (para facilitar la comprensión de conceptos y procedimientos; para ayudar a establecer relaciones; como base de argumentaciones, etc.) y, a mi juicio ilustra que sigue cabiendo cierta innovación metodológica en un tópico matemático tan tratado como éste y sobre el que existe una gran cantidad de contenidos educativos multimedia excesivamente homogénea...
¿Por qué un kit como éste? Con frecuencia se observa en blogs de matemáticas que para este tópico (fracciones-decimales-porcentajes), también para otros, se ofrece un popurrí de imágenes-enlace a microaplicaciones de índole diferente (tanto desde el punto de vista de la autoría como, sobre todo, desde el punto de vista de su enfoque metodológico y de su interés y calidad didáctica) con contenidos que a veces se solapan y que favorecen una visión excesivamente rutinaria, fraccionada o incompleta de lo esencial en este tópico. Predominando, por otra parte, los enfoques que ponen el énfasis en lo mecánico que aquellos que apuestan por favorecer el aprendizaje por descubrimiento.
Por otra parte, contenidos esenciales de este tópico (equivalencia de fracciones, fracción de un número, nociones básicas de divisibilidad, cálculo de porcentajes, equivalencia fracción- número decimal-porcentaje) se basan en un pequeño número de conceptos y relaciones que empiezan a abordarse con cierta profundidad en 4º y 5º de Educación Primaria (y se siguen ampliando en cursos posteriores), siendo un correcto enfoque del mismo el tratamiento del campo conceptual de la multiplicación-división orientado hacia el desarrollo del razonamiento numérico proporcional (-que ya traté con profundidad en "velocidad, móviles y razonamiento matemático"- ya que el significado de relación o proporción de una fracción es fundamental), de estrategias de cálculo mental (ya que fracciones y porcentajes sencillos se utilizan con frecuencia en situaciones cotidianas y su manejo competente involucra las principales estrategias que conforman el sentido numérico) así como de estrategias de representación y modelado gráfico de situaciones problemáticas (que facilitan enormemente la visualización, captación y expresión de relaciones así como el aprendizaje por descubrimiento).
"Largo es el camino de la enseñanza por medio de teorías, breve y eficaz por medio de ejemplos".
Lucio Anneo Séneca
Como complemento a este recurso, me parece adecuado colocar aquí este estudio teórico práctico sobre fracciones-decimales-porcentajes:
Lo esencial en un geoplano virtual no es que represente con mayor o menor realismo los vértices o pivotes ni los "elásticos", a modo de un geoplano analógico. Como ya indiqué en el post "Tramas de puntos, geoplanos y pizarras geométricas", el interés didáctico de los geoplanos ( sean dibujados, analógicos o digitales) reside en que son modelos finitos del plano, con una geometría finita: un número finito de puntos (puntos de la trama o vértices de la malla), de longitudes de segmentos, de valores angulares, de polígonos; un número finito de valores para el perímetro y el área de éstos, etc...
Este nuevo recurso, que he bautizado con el nombre de "GEOFRACCIONADOR", está pensado para ser utilizado como "taller de fracciones" (aunque su interés es innegable para el estudio de áreas de figuras por composición/descomposición). Aunque me encantan los materiales didácticos analógicos, creo que no cabe duda del valor añadido que aportan los correspondientes materiales virtuales bien diseñados (ver "Material didáctico analógico vs material didáctico digital"). Así, "GEOFRACCIONADOR" añade nuevas dimensiones y posibilidades a las de materiales analógicos diseñados para la representación y estudio de fracciones, tales como los que aparecen en "eje" ("Espacio Jordi Esteve" página web de materiales manipulativos por la enseñanza de las Matemáticas. Un proyecto del grupo PuntMat: Ana Cerezo, Cecilia Calvo, David Barba y "mirones asociados"):
Como "geoplano virtual" que es, permite la fácil obtención de polígonos pulsando sobre los vértices del mismo. Para adecuarlo especialmente al fraccionamiento, el polígono unidad (rectángulo, cuadrado o triángulo equilátero) se puede fraccionar en un número variable de partes iguales, variando a la par el número de puntos interactivos que se sitúan en los vértices de cada una de las partes. Además, se pueden trazar varias (hasta 12) figuras_fracciones del polígono unidad con diferente color, desplazables y semitransparentes, para facilitar su comparación. Esta comparación se puede llevar a cabo por dos procedimientos esenciales: el adosamiento sin solapamiento (que equivale a la suma) y por superposición ( que sirve para ilustrar diferencias así como para captar relaciones de multiplicidad- multiplicación y división-).
La aplicación, además, en modo "manipulación libre", muestra las fracciones numéricas que se corresponden por el color con las fracciones figurativas. Se trata de un "geoplano virtual inteligente" en el sentido de que guarda alguna/s características de los polígonos trazados ( la fracción de la unidad que representan, el número de vértices, la longitud de los lados, etc...). De esta manera favorece el descubrimiento y expresión de relaciones ( en modo manipulación libre) así como el proponer retos de determinación de polígonos que reúnan determinadas características y su comprobación.
Como ya he indicado anteriormente, el gran potencial de esta aplicación se alcanza en modo "MANIPULACIÓN LIBRE" (tanto del lado de profesores/as como de alumnos/as) cuando se utilizan las características de diseño de la aplicación y el apoyo visual de las figuras para ilustrar, descubrir y expresar relaciones entre fracciones numéricas.
A continuación se ofrecen algunas imágenes que sugieren el potencial didáctico de esta aplicación:
Ilustración gráfica del concepto "fracciones equivalentes".
Diferentes fracciones del rectángulo unidad. Correspondencia de color entre fracciones gráficas y numéricas.
Diferentes fracciones gráficas del triángulo equilátero unidad para el estudio de relaciones de reunión y multiplicidad entre ellas y expresión de las correspondientes relaciones numéricas implícitas.
Comparación gráfica y numérica de fracciones de una misma unidad. Suma (adosamiento sin solapamiento) y resta (superposición) de fracciones. Predecir el resultado numérico a partir del gráfico para demostrar la coherencia de las operaciones numéricas con fracciones.
Sencillas relaciones de multiplicidad entre fracciones de la misma unidad. Correspondencia gráfico-numérica.