03 agosto, 2017

CUERPOS GEOMÉTRICOS. Tercer ciclo. Primaria

CUERPOS GEOMÉTRICOS. Tercer Ciclo. Primaria.


"De todas las disciplinas matemáticas la Geometría es la que mayores posibilidades ofrece a la hora de experimentar, mediante materiales adecuados, sus métodos, sus conceptos, sus propiedades y sus problemas". 

Claudi Alsina, Carme Burgués, Josep Mª Fortuny.

"MATERIALES PARA CONSTRUIR LA GEOMETRÍA"

(Matemáticas. Cultura y aprendizaje. (nº 11). Editorial Síntesis)

Estoy totalmente de acuerdo con la cita. De hecho ya la he usado anteriormente en varias ocasiones y en otros sitios.  Además, en mi dilatada experiencia docente, he "vivido" y "experimentado" el enorme valor formativo que la Geometría tiene, tanto para el docente como para el alumno. Han sido muchos los casos que he conocido de alumnos/as que se han "enganchado" a las matemáticas a través de tareas geométricas sensibles y constructivas...

La Geometría, desde un principio, fue también la parte de la matemática que más me sedujo, llegando incluso a patentar y poner en el mercado un material físico manipulativo, ARQUIMAT.

Desde el año 2000, vengo desarrollando y mejorando manipulativos virtuales para la enseñanza y aprendizaje de la Geometría compatibles, obviamente, con tareas de trazado, recortado, plegado, construcción... con otros materiales físicos.
  
La macroaplicación que ofrezco aquí (que incluye, entre otras, a las ofrecidas en las dos entradas anteriores), como otras muchas de DidactmaticPrimaria, supone un enfoque rico e innovador en la enseñanza-aprendizaje de la Geometría en Primaria. Propone una geometría fuertemente visual, manipulativa y  constructiva apoyada en tareas de exploración y descubrimiento, de conceptualización,  de comprobación, de resolución de retos e investigaciones; Una geometría eficaz para el desarrollo de habilidades visuales, de comunicación, de dibujo y construcción, de realización de medidas directas e indirectas, de razonamiento, de búsqueda de regularidades y relaciones cualitativas y cuantitativas; de aplicación y transferencia...

Se puede comprobar cómo pone el énfasis y facilita procesos relevantes: experimentar, explorar, descubrir, crear, relacionar, conjeturar, formular, argumentar, discutir, justificar, probar, demostrar, generalizar...

Desde una visión como ésta es lógico que me sorprenda encontrar algunos documentos en los que (para magnificar la relevancia de lo que no es tan relevante ni innovador) todavía se quiere exagerar la importancia y bondad  de ciertos métodos (de cálculo) afirmando que aportan a la Geometría un cálculo eficaz y rápidoo habilidad (técnica) en la resolución de raíces cuadradas o en la suma de cantidades expresadas en grados, minutos y segundos... 

Esto implica, explícita e implícitamente, una visión reduccionista y muy pobre del potencial de la Geometría para el desarrollo del currículo de Matemáticas en Primaria. y para el desarrollo personal del alumnado. A pesar de la buena fe, que no pongo en duda, de quienes lo manifiestan y publicitan en grado extremo, hay que decir con rotundidad que  "no han vivido la geometría".


Poliedros arquimedianos (todas sus caras son polígonos regulares)


Cuerpos redondos (con superficies curvas)

Desarrollos planos de poliedros.



Poliedros regulares o sólidos platónicos. Relaciones.

Clases de poliedros (I)

Puzle_transformables y construcciones poliédricas.

05 julio, 2017

Puzle_transformables y construcciones poliédricas

Puzle_transformables y construcciones geométricas

Algunos de los contenidos,  correspondientes  al 3º ciclo de Primaria, sobre los que se incide:

4.13. Formación de figuras planas y cuerpos geométricos a partir de otras por composición y descomposición.
4.16. Regularidades y simetrías: Reconocimiento de regularidades.
4.17. Reconocimiento de simetrías en figuras y objetos.
4.18. Trazado de una figura plana simétrica de otra respecto de un elemento dado.
4.19. Introducción a la semejanza: ampliaciones y reducciones.
4.20. Utilización de instrumentos de dibujo y programas informáticos para la construcción y exploración de formas geométricas.
4.21. Interés por la precisión en la descripción y representación de formas geométricas.
4.23. Confianza en las propias posibilidades para utilizar las construcciones geométricas, los objetos y las relaciones espaciales para resolver problemas en situaciones reales.
4.24. Interés por la presentación clara y ordenada de los trabajos geométricos.

Fuente: https://aprendiendomatematicas.com/cita-de-santalo/

22 abril, 2017

Modelo de barras interactivo.

En su blog "Más ideas, menos cuentas", Pedro Ramos ha escrito un excelente post sobre "Prueba final de primaria de Singapur ", en la que presenta  los numerosos items de la prueba, los comenta y reflexiona acertadamente sobre los mismos.

Me ha parecido adecuado encabezar este post a partir de un comentario suyo, que reproduzco literalmente:

"Un detalle que me parece muy interesante es la profundidad con la que tratan la aritmética, con problemas como el 15. Aquí son inimaginables antes de llegar al álgebra, y creo que es un error. Como ya he comentado alguna vez, me parece que tratar problemas como estos sin herramientas algebraicas es muy importante para profundizar en la comprensión de la aritmética, y para desarrollar estrategias de resolución de problemas. La herramienta que aquí echamos de menos para resolver estos problemas es su famoso modelo de barras"

Pues bien, aquí está el problema número 15 :


Problema propuesto en Prueba final de primaria de Singapur

Es obvio que problemas aritméticos como éste se identifican con los clásicos problemas que se resuelven algebraicamente y a los que se les dedica un tiempo considerable en Educación Secundaria. Éste, en concreto, se traduce algebraicamente en un sistema de dos ecuaciones de primer grado con dos incógnitas:

Traducción algebraica del problema aitmético

También es obvio que problemas como éste se proponen porque se adecuan al modelo de barras tan característico del método Singapur. No todo problema aritmético se traduce fácilmente a un gráfico de barras ni es ésta siempre la mejor o única representación para facilitar la resolución de un problema aritmético.

Así, por ejemplo, encuentro el modelo de barras muy potente en la estructura aditiva ya que cualquier problema (de cambio, combinación, comparación o igualación, según la estructura semántica) puede ser reducido en la mente de los/as niños/as a un problema con tres barras (total y dos partes) integrando en un sólo tipo de esquema los esquemas de alto orden o superesquemas "parte-todo", de "transferencia" y de "más menos que" propuestos en la teoría de Kintsch y Greeno (1985) para problemas de combinación, cambio y comparación, respectivamente... 

En la estructura multiplicativa ya el modelo de barras es meno adecuado, sobre todo cuando algún factor es relativamente grande...Resulta, en cambio, casi insoslayable en problemas de fracciones y porcentajes porque facilita enormemente la comprensión. Por otra parte, traducen gráficamente bien una buena cantidad de problemas aritméticos que algebraicamente se corresponden con ecuaciones de primer grado, sistemas de dos ecuaciones con dos incógnitas, ecuaciones de la recta,...

Pero es prácticamente imposible realizar un único modelo interactivo que se adecue a las diferentes tipologías de problemas aritméticos sin que pierda eficacia, agilidad o sencillez...


Modelo de barras interactivo. DidactmaticPrimaria


La imagen anterior muestra el problema modelado utilizando el modelo interactivo incorporado en las aplicaciones que presento a continuación. Nótese que el sistema de ecuaciones invita a su resolución por "sustitución". De manera análoga, en el modelo con barras se ha de sustituir cada barra roja (X) por  barra azul (y) + 0.8, de tal manera que podríamos afirmar que 8 barras azules + 3 x 0.8 es igual a 7.2. A partir de aquí es fácil resolver el problema.

Se trata de un modelo interactivo tremendamente ágil y muy sencillo de utilizar. A pesar de ello, las aplicaciones disponen de un tutorial interactivo para aprender el uso del modelo. He eludido en él el tratamiento de problemas de fracciones y porcentajes porque dispongo de otros modelos interactivos y asistidos más adecuados. En la aplicación para tercer ciclo de Primaria el modelo puede mostrar todos sus elementos y potencial. Para la aplicación dirigida al segundo ciclo de Primaria se utiliza el mismo modelo, pero simplificado.

Resolución de problemas aritméticos. Modelo de barras interactivo. Tercer Ciclo.



Resolución de problemas aritméticos. Modelo de barras interactivo. Segundo Ciclo.


Pero la utilización del modelo de barras, conlleva profundas reflexiones didácticas:
"Al disponerlos gráficamente, los datos conocidos y desconocidos se organizan de relativamente pocas formas diferentes, lo que facilita al alumno la identificación de la operación que corresponde a cada una de ellas" 
Urbano Ruiz S.,  Fernández Bravo  J.A., Fernández Palop M. P. ;  Universidad Camilo José Cela, España. "El modelo de barras: una estrategia para resolver problemas de enunciado en Primaria"
Opino que siempre que esto ocurra, siempre que el modelo facilite al alumno la identificación de la operación a realizar,  la utilización del modelo será adecuada.


  • ¿Ocurre esto siempre que se puede utilizar el modelo de barras? 
  • ¿Ocurre esto en el modelado con barras del problema 15?


Por otra parte, no cabe duda de que saber realizar el modelo, en sí mismo, implica unos saberes, unas subcompetencias matemáticas ligadas a la comprensión, a la traducción de representaciones, etc. De hecho, nos vamos a encontrar mayores dificultades en la construcción del modelo adecuado a cada problema que en la interpretación correcta de modelos ya realizados. Por lo tanto, la modelización requiere una instrucción específica.

Por otra parte, creo que es indisociable la interacción mutua entre la representación lingüística y la representación figurativa. La práctica totalidad de los/as alumnos/as que saben realizar el modelo adecuado para un problema (en los casos menos complejos) es porque tienen la capacidad de previsualizarlo y, por lo general, de expresar lingüísticamente (prealgebraicamente) las relaciones entre los datos y la/s incógnita/as así como la capacidad para resolverlo una vez realizado...Por el contrario, difícilmente va a realizar correctamente el modelo un/a alumno/a que previamente no lo haya previsualizado o que no sepa verbalizar o subverbalizar lingüísticamente las relaciones aludidas entre los datos y la incógnita...

Otra cuestión interesante para el análisis que se pone de manifiesto en la práctica escolar es que el modelo de barras se basa en el establecimiento de relaciones entre las longitudes de las barras y el etiquetado de las mismas. Como, a priori, no se conocen los valores de las incógnitas, las barras utilizadas van a tener unas longitudes arbitrarias. Aunque el modelado del problema puede ser correcto sin que las barras guarden longitudes proporcionales a sus valores, se establecen con frecuencia relaciones incorrectas basadas en lo estrictamente figurativo del esquema que se está realizando.

Es obvio que este tipo de problemas podría tener otras representaciones figurativas alternativas:


Representación figurativa del problema número 15.

Representación figurativa del problema de las chucherías, portada de la aplicación 3º Ciclo.