11 julio, 2013

Instrumentos Interactivos para el Desarrollo de Habilidades Cognitivas

Acabo de incluir estas ocho aplicaciones mías inéditas, diseñadas en 2005 y 2006, en el apartado Manipulables_Virtuales_Matemáticas_V de este blog. Ha sido una suerte encontrar los archivos de diseño de las mismas, que ya daba por perdidos. Todas ellas formaban parte de un proyecto de Enriquecimiento Cognitivo que no llegué a acabar. A partir de los archivos de edición, les he realizado algunas mejoras y actualizaciones para que estén en consonancia con la estética y calidad general de las aplicaciones que se ofrecen en DIDACTMATICPRIMARIA.

No todas las aplicaciones (manipulables virtuales) que se ofrecen en Manipulables_Virtuales_Matemáticas_V  tendrían cabida, de manera estricta, dentro de los bloques de contenidos tradicionales de la Matemática de Primaria. No obstante, son Instrumentos Interactivos para el Enriquecimiento Intelectual, Instrumentos para el Desarrollo de Habilidades Cognitivas, ... e inciden en aspectos esenciales de la naturaleza de la actividad matemática y del desarrollo de la inteligencia lógico-matemática.

¡Espero que las disfrutéis!


¿Cuál es la última figura colocada?

¿La última figura colocada?
Interesantísmo juego para favorecer la aplicación de estrategias personales para mejorar la memoria inmediata o retentiva así como la imaginación creativa. Presenta cinco niveles o grados de dificultad de manera que sea un reto para personas de cualquier edad sin necesidad de conocimientos previos. Para cada nivel, se puede optar por trabajar con cartulinas-animal, cartulinas-palabra o cartulinas-grupo de palabras, lo que aporta interesantes matices y diversidad a estas aplicación. PDI: sí.

Escondite en el bosque

Una atractivo juego que va más allá de los tradicionales y rutinarios test-memo (búsqueda de parejas) permitiendo el desarrollo de estrategias personales para mejorar la memoria inmediata así como la graduación de la dificultad de la prueba. De interés para cualquier edad y nivel. Lleva registro del porcentaje de eficacia con que se ha realizado. PDI: sí.


Criaturas. Prueba de hipótesis

Aplicación inspirada en la lección 6ª (" La prueba de hipótesis ") de la serie I (FUNDAMENTOS DEL RAZONAMIENTO ) de la publicación del Grupo de Investigación-trabajo sobre el PROYECTO DE INTELIGENCIA "HARVARD" (PIH) en el Centro de Profesores de Leganés (Madrid), coordinado por  Miguel Megía Fernández.
Manual del Profesor. Educación Secundaria Obligatoria. Editorial CEPE (Ciencias de la Educación Preescolar  y  Especial).
No se utiliza ningún nombre ni imagen citados en la documentación anterior. La lección mencionada ha sugerido la presente adaptación / interpretación interactiva para la Etapa Primaria (reconocimiento de atributos, clasificación, búsqueda de intruso, etc...)Imágenes diseñadas por el autor a partir de la fuente de símbolos vectoriales "creatures". PDI: sí.

Patrones con animales. Razonamiento inductivo.

Razonamiento inductivo con animales. Dos niveles o grados de dificultad propuestos.  PDI: sí.


Razonamiento analógico con figuras

Aplicación diseñadas para los primeros cursos de Primaria para favorecer el descubrimiento de relaciones mediante 50 analogías con figuras de diversa índole. Se entiende por analogía una proporción de igualdad de cuatro términos - cuatro figuras en este caso- en los cuales el segundo se relaciona con el primero como el cuarto lo hace con el tercero (dobles flechas horizontales o bien dobles flechas verticales en la imagen anterior). Se considera que la analogía está aún mejor definida cuando los términos primero y tercero se relacionan de la misma manera que lo hacen el segundo y el cuarto.
Las relaciones implícitas en las figuras propuestas se basan en variables muy diversas: forma, color, tamaño, orientación, relaciones parte/todo, relaciones de composición /fraccionamiento, cantidad, etc...pudiendo estar las figuras relacionadas de manera análoga en base a una, dos o más variables...  PDI: sí.

Matriz_Memo
Matriz_Memo.
Otra forma no rutinaria de abordar el desarrollo de estrategias personales para mejorar la memoria inmediata así como la graduación de la dificultad de la prueba. De interés para cualquier edad y nivel. Lleva registro del porcentaje de eficacia con que se ha realizado. PDI: sí.

Puzles-silueta

Para Educación Infantil y Primer Ciclo de Educación Primaria. 12 puzles-silueta de dificultad creciente. Se puede mostrar u ocultar la silueta de cada figura a completar. Lleva registro del porcentaje de eficacia con que se ha realizado. PDI: sí.


Puzles-16

Puzles_16.
Colección de 10 imágenes artísticas sobre el mundo de los animales. Cada imagen está dividida en 16 cuadrados de idéntico tamaño (16 piezas del puzle) que pueden ser barajadas y luego recolocadas para resolver el puzle. PDI: sí.

13 junio, 2013

Matemática experimental



(Ver a pantalla completa)

He aquí un estupendo recurso, bien diseñado y que apuesta por la experimentación en matemáticas. Te aconsejo que hagas un recorrido por esta exposición interactiva.

01 junio, 2013

Geometría creativa y constructiva en Educación Primaria

Esculturas con cubos y fracciones de cubo
Esculturas con cubos y fracciones de cubo
Sólidos platónicos
Poliedros. Clases
La imagen de la izquierda corresponde a la aplicación "policubos" que se ofrece en este blog. Pone de manifiesto correspondencias entre diseños figurativos planos formados por cuadrados y medios cuadrados (escuadras) y diseños figurativos tridimensionales formados con cubos y mitades de cubo. La aplicación ayuda a intuir y comprender el paso del plano (2D) al espacio tridimensional (3D) abordando, a la par, el diseño creativo...


Diseños 3D figurativos compuestos por cubos, semicubos y pirámides 1/3 de cubo.

Sólidos platónicosPoliedros. Clases
En la aplicación "policubos II" se profundiza en el diseño libre con cubos y mitades de cubo con diferentes orientaciones espaciales.
Copiar figuras

Aplicaciones como "Copiar figuras" son ideales para el desarrollo de la percepción analítica que, como ya indiqué en un post anterior, es a la geometría lo que la comprensión lectora es a la lectura. Esta percepción analítica está favorecida por la referencia visual de la cuadrícula e implica la interiorización progresiva de aspectos topológicos, métricos y geométricos que no se pueden obviar. Ya en otros post he tratado con  profundidad el potencial didáctico de cuadrícula y tramas de puntos para abordar múltiples contenidos geométricos a lo largo de toda la etapa Primaria: "Regularidades en el plano. Mosaicos, cenefas, celosías,..", "Tramas de puntos, geoplanos y pizarras geométricas",...

El libro "Materiales para construir la geometría" (de Claudi Alsina, Carme Burgués y Josep Mª Fortuny. Colección "Matemáticas: cultura y aprendizaje", número 11. 1988) comienza con un párrafo que yo he citado ya en diferentes sitios que, a mi juicio, orienta la didáctica de la Geometría en la escuela y en el que creo firmemente:
"Vivir la Geometría en la escuela puede ser una experiencia feliz si basamos su aprendizaje en actividades constructivas, sensibles y lúdicas. De todas las disciplinas matemáticas la Geometría es la que mayores posibilidades ofrece a la hora de experimentar, mediante materiales adecuados, sus métodos, sus conceptos, sus propiedades y sus problemas. Es por ello que la enseñanza geométrica no debe sucumbir a las limitaciones formales, simbólicas y algebraicas de los conocimientos matemáticos: será precisamente es este primer estadio de sensibilidad donde el tacto, la vista, el dibujo y la manipulación permitirán familiarizar al alumno con todo un mundo de formas, figuras y movimientos sobre el cual asentar posteriormente los modelos abstractos"
Pero, además, a través de las formas, figuras y movimientos el alumno se adentra en un terreno de estética, de belleza,...sensaciones que, casi sin excepción, a todos nos produce esa especial perfección y armonía que percibimos en múltiples formas geométricas. 

No cabe, duda, por tanto, de que el tratamiento de la geometría, sobre todo de la geometría construida por los alumnos, incide de lleno en la educación en valores: si bien el reconocimiento y sentimientos de la armonía y belleza en relación con sus propias producciones  geométricas tiene una componente subjetiva (y por tanto hay que desarrollar también esa sensibilidad) para el alumno, por otra parte éste asume con facilidad que el grado de exactitud, armonía y belleza tiene una componente objetiva que está directamente relacionada con su interés y esfuerzo por lograr perfección en el trazado y construcción de formas, ...

Sólidos platónicosNo cabe duda de que las TICs, en conjunción con multitud de software específico de geometría dinámica,  están facilitado enormemente una visión creativa, dinámica e interactiva de la Geometría que no era posible, o al menos muy difícil, hace relativamente pocos años. Este hecho trae consigo, de manera ineludible, nuevos enfoques e innovaciones del currículo de geometría, también a nivel elemental.

Pero en Primaria no resulta fácil acercar a los alumnos/as el mundo de lo tridimensional, mediante aplicaciones virtuales,  de manera que suponga para ellos una experiencia  que conlleve, además, aprendizaje relevante. No al menos en la misma medida que para las figuras planas. No resulta nada fácil, por ejemplo, realizar diseños tridimensionales con Geogebra o algún otro software parecido. ¿Qué aplicaciones virtuales permiten a alumnos/as de Primaria la composición/descomposición de cuerpos tridimensionales? Nos tenemos que conformar con facilitarles la visualización de poliedros y estructuras poliédricas, incluso mostrarles poliedros que se transforman en sus correspondientes desarrollos planos, y viceversa; pero poco más...

He aquí algunas de las aplicaciones que se ofrecen en este blog que permiten trabajar diferentes aspectos de sólidos tridimensionales:




3D-poliedrosGeneración y codificación de policubos por capas
Desarrollos planos alternativos para un mismo poliedro.
Secciones de prismas, pirámides , cuerpos redondos y sólidos de revolución.Cubos, policubos y fracciones de cubo.

+
A pesar de lo variado de estas aplicaciones y del indudable interés didáctico que supone la manipulación de modelos ya construidos, es necesario proponer a nuestros alumnos/as otras actividades "analógicas", de índole constructiva, manipulativa y lúdica que hagan uso de los procedimientos fundamentales de la Geometría: el dibujo y la construcción de modelos. Actividades que los ayuden a desarrollar y adquirir dominio en el trazado, doblado, recortado, pegado, construcción, etc; que desarrollen actitudes de perseverancia y afán de superación...

En el siguiente vídeo recojo algunas de las actividades de este tipo que he propuesto yo a alumnos/as de 5º y 6º. Podéis consultar, también, "Origami modular en Primaria". Espero que las encontréis interesantes y sugerentes:





Quiero acabar este post saltando de lo básico de esta temática, a lo más avanzado . Lo que nos muestra el siguiente vídeo es impresionante, alucinante,...


Inspirado por la división celular, Michael Hansmeyer escribe algoritmos que diseñan formas y figuras con millones de facetas extremadamente fascinantes. Ninguna persona podría delinearlas a mano, pero son construibles, y podrían revolucionar la manera en la que concebimos la forma arquitectónica.

Educación y tecnologías. Las voces de los expertos.

Educación y tecnologías. Las voces de los expertos.
Educación y tecnologías. Las voces de los expertos.


27 mayo, 2013

Kit internivelar para la enseñanza-aprendizaje de fracciones, decimales y porcentajes

Kit Internivelar para la enseñanza aprendizaje de fracciones decimales y porcentajes
kit_Internivelar_Fracciones_Decimales_Porcentajes





Tal y como anuncié en el post  “Fracción de un número y estimación de fracciones sobre la recta numérica” (19 de marzo), he estado preparando una macroaplicación sobre fracciones que al final ha tomado la forma de este “KIT INTERNIVELAR PARA LA ENSEÑANZA-APRENDIZAJE DE FRACCIONES, DECIMALES Y PORCENTAJES”. Este trabajo, que me ha ocupado más tiempo del que yo pensaba, ha sido el responsable del bajo número de nuevos post publicados en este blog desde esa fecha. Todo ello a pesar de que se nutre de algunas aplicaciones preexistentes que han sido revisadas, adaptadas y mejoradas ( como es el caso de la resolución de problemas con fracciones asistida por ordenador). Además se han añadido otras nuevas para hacerlo más completo y útil a su propósito. Aún así se encuentra en “fase beta” ya que sus apartados son susceptibles de ampliación…


A pesar de ello, como puede comprobar el/la lector/a, es profuso en modelos interactivos que se ponen tanto al servicio del profesorado (para apoyar sus explicaciones) como del lado del alumnado (para facilitar la comprensión de conceptos y procedimientos; para ayudar a establecer  relaciones; como base de argumentaciones, etc.) y, a mi juicio ilustra que sigue cabiendo cierta innovación metodológica en un tópico matemático tan tratado como éste y sobre el que existe una gran cantidad de contenidos educativos multimedia excesivamente homogénea... 


 ¿Por qué un  kit como éste? Con frecuencia se observa en blogs de matemáticas que para este tópico (fracciones-decimales-porcentajes), también para otros, se ofrece un popurrí de imágenes-enlace a microaplicaciones de índole diferente (tanto desde el punto de vista de la autoría como, sobre todo, desde el punto de vista de su enfoque metodológico y de su interés y calidad didáctica) con contenidos que a veces se solapan y que favorecen una visión excesivamente rutinaria, fraccionada o incompleta de lo esencial en este tópico. Predominando, por otra parte, los enfoques que ponen el énfasis en lo mecánico que aquellos que apuestan por favorecer el aprendizaje por descubrimiento.


Por otra parte, contenidos esenciales de este tópico (equivalencia de fracciones, fracción de un número, nociones básicas de divisibilidad, cálculo de porcentajes, equivalencia fracción- número decimal-porcentaje) se basan en un pequeño número de conceptos y relaciones que empiezan a abordarse con cierta profundidad en 4º y 5º de Educación Primaria (y se siguen ampliando en cursos posteriores), siendo un correcto enfoque del mismo el tratamiento del campo conceptual de la multiplicación-división orientado hacia el desarrollo del razonamiento numérico proporcional (-que ya traté con profundidad en "velocidad, móviles y razonamiento matemático"- ya que el significado de relación o proporción de una fracción es fundamental), de estrategias de cálculo mental (ya que fracciones y porcentajes sencillos se utilizan con frecuencia en situaciones cotidianas y su manejo  competente involucra las principales estrategias que conforman el sentido numérico) así como de estrategias de representación y modelado gráfico de situaciones problemáticas (que facilitan enormemente la visualización, captación y expresión de relaciones así como el aprendizaje por descubrimiento).

"Largo es el camino de la enseñanza por medio de teorías, breve y eficaz por medio de ejemplos". 

                                                                           Lucio  Anneo  Séneca   

Como complemento a este recurso, me parece adecuado colocar aquí este estudio teórico práctico sobre fracciones-decimales-porcentajes:
  

20 abril, 2013

"Geofraccionador". Taller de fraccionamiento de figuras.


El nuevo recurso que brindo al público en esta entrada surge como evolución de otras aplicaciones centradas en el diseño de figuras sobre tramas de puntos virtuales e interactivas: "Copiar figuras", "Geoplanos", "Geoplano Inteligente", "Áreas de polígonos con vértices en una trama ortométrica", "Área de polígonos con vértices en una trama isométrica", "Pizarras geométricas", y otras...Todas ellas inciden de manera ideal, a mi juicio, en el desarrollo de la percepción espacial - tanto analítica como sintética-, que es a la geometría lo que la comprensión lectora es a la lectura.

Lo esencial en un geoplano virtual no es que represente con mayor o menor realismo los vértices o pivotes ni los "elásticos", a modo de un geoplano analógico. Como ya indiqué en  el post "Tramas de puntos, geoplanos y pizarras geométricas", el interés didáctico de los geoplanos ( sean dibujados, analógicos o digitales) reside en que son modelos finitos del plano, con una geometría finita: un número finito de puntos (puntos de la trama o vértices de la malla), de longitudes de segmentos, de valores angulares, de polígonos; un número finito de valores para el perímetro y el área de éstos,  etc...

Este nuevo recurso, que he bautizado con el nombre de "GEOFRACCIONADOR", está pensado para ser utilizado como "taller de fracciones" (aunque su interés es innegable para el estudio de áreas de figuras por composición/descomposición). Aunque me encantan los materiales didácticos analógicos, creo que no cabe duda del valor añadido que aportan los correspondientes materiales virtuales bien diseñados (ver "Material didáctico analógico vs material didáctico digital"). Así, "GEOFRACCIONADOR" añade nuevas dimensiones y posibilidades a las de materiales analógicos diseñados para la representación y estudio de fracciones, tales como los que aparecen en "eje" ("Espacio Jordi Esteve" página web de materiales manipulativos por la enseñanza de las Matemáticas. Un proyecto del grupo PuntMat: Ana Cerezo, Cecilia Calvo, David Barba y "mirones asociados"):


Espai Jordi Esteve


 Como "geoplano virtual" que es, permite la fácil obtención de polígonos pulsando sobre los vértices del mismo. Para adecuarlo especialmente al fraccionamiento, el polígono unidad (rectángulo, cuadrado o triángulo equilátero) se puede fraccionar en un número variable de partes iguales, variando a la par el número de puntos interactivos que se sitúan en los vértices de cada una de las partes. Además, se pueden trazar varias (hasta 12) figuras_fracciones del polígono unidad con diferente color, desplazables y semitransparentes,  para facilitar su comparación. Esta comparación se puede llevar a cabo por dos procedimientos esenciales: el adosamiento sin solapamiento (que equivale a la suma) y por superposición ( que sirve para ilustrar diferencias así como para captar relaciones de multiplicidad- multiplicación y división-).

La aplicación, además, en modo "manipulación libre", muestra las fracciones numéricas que se corresponden por el color con las fracciones figurativas. Se trata de un "geoplano virtual inteligente" en el sentido de que guarda alguna/s características de los polígonos trazados ( la fracción de la unidad que representan, el número de vértices, la longitud de los lados, etc...). De esta manera favorece el descubrimiento  y expresión de relaciones ( en modo manipulación libre) así como el proponer retos de determinación de polígonos que reúnan determinadas características y su comprobación.

Geofraccionador I

(Pulsar sobre la imagen para abrir la aplicación)



Como ya he indicado anteriormente, el gran potencial de esta aplicación se alcanza en modo "MANIPULACIÓN LIBRE" (tanto del lado de profesores/as como de alumnos/as) cuando se utilizan las características de diseño de la aplicación y el apoyo visual de las figuras para ilustrar, descubrir y expresar relaciones entre fracciones numéricas. 

A continuación se ofrecen algunas imágenes que sugieren el potencial didáctico de esta aplicación:



Ilustración gráfica del concepto "fracciones equivalentes".
Diferentes fracciones del rectángulo unidad. Correspondencia de color entre fracciones gráficas y numéricas.
Diferentes fracciones gráficas del triángulo equilátero unidad para el estudio de relaciones de reunión y multiplicidad entre ellas y expresión de las correspondientes relaciones numéricas implícitas.
Comparación gráfica y numérica de fracciones de una misma unidad. Suma (adosamiento sin solapamiento) y resta (superposición) de fracciones. Predecir el resultado numérico a partir del gráfico para demostrar la coherencia de las operaciones numéricas con fracciones.

Sencillas relaciones de multiplicidad entre fracciones de la misma unidad. Correspondencia gráfico-numérica.







19 marzo, 2013

Fracción de un número y estimación de fracciones sobre la recta numérica


Os presento dos aplicaciones que no siendo nuevas no estaban incluidas en la colección de "Manipulables_Virtuales_Matemáticas_II". En realidad, la primera de ellas, "FRACCIÓN DE UN NÚMERO", se había incluido incompleta, sin la parte práctica. La versión definitiva de ésta así como la segunda aplicación "ESTIMACIÓN DE FRACCIONES", se me habían "traspapelado".


Fracción de un número. Comprender y practicar.


Estimación de fracciones sobre la recta numérica

Ambas aplicaciones, no obstante, se incluirán como apartados o subapartados del menú de una  macroaplicación  internivelar que estoy preparando sobre fracciones.

06 marzo, 2013

Perímetros. Una propuesta internivelar



Perímetro y área son dos magnitudes geométricas fundamentales en el estudio de las formas planas. Con demasiada frecuencia el estudio de estas dos "variables" es excesivamente rutinario, sin buscar conexiones entre ambas, y enfocado, con excesiva prisa, hacia el cálculo numérico de perímetros (lo que empobrece su vertiente y significado geométricos). Esto no es sino consecuencia lógica y directa de la tradición escolar y de nuestra formación en matemáticas y su didáctica.

Los propios conceptos matemáticos no son estáticos sino que evolucionan paralelamente a la historia de las matemáticas enriqueciéndose e interconectándose unos con otros de manera cada vez más rica y creativa. Así, por ejemplo, la geometría fractal ha puesto de manifiesto que una región de área finita puede tener un perímetro infinito (ver Curva de Koch). Sirva esto último para justificar el estudio de relaciones básicas perímetro-área en la enseñanza de las matemáticas básicas tendente a que los/as alumnos/as descubran familias de figuras isoperimétricas coincidentes en área, familias de figuras isoperimétricas  no coincidentes en su área, modificaciones perimétricas que no varían el área (lo cual conecta de manera natural con buena parte de la obra artístico matemática de Mauritius Cornelius Escher- embaldosados figurativos-), etc...

¿Hasta qué punto los docentes comprendemos, experimentamos, exploramos y conectamos los contenidos que queremos que nuestros/as alumnos/as aprendan? 

[...] Pero hay algo más. Y se trata de algo que he llegado a creer, por contraste con aquello de lo que tengo evidencia a través de la investigación: creo que los niños necesitan jugar más. Esto se debe a que las matemáticas se ocupan de abstracciones. El álgebra y la geometría pueden ser vistas como un juego con reglas más o menos arbitrarias sobre objetos que son abstracciones (por cierto, ambas materias resultan ser útiles en el mundo real, pero no tratan sobre eso). ¿Cómo podrían aprender los niños a usar el álgebra y la geometría? Si tienen muchas experiencias concretas de las que abstraer. Logramos eso bastante bien en nuestras clases, pero también necesitan la práctica de jugar con las abstracciones. Y los niños son muy buenos en ésto; inventan juegos todo el tiempo. Me gustaría ver mucho más juego matemático en la escuela primaria.
Pero, ¿deberían todos los maestros tener más experiencia matemática? Sí, aunque sospecho que hay muchas cosas en las que deberían tener más educación: alfabetización, psicología infantil... Lo que me gustaría ver, no obstante, es que todos los docentes tengan una educación en matemáticas al punto de ser positivos respecto de ellas, que tengan confianza en sus conocimientos según el nivel que enseñan, y que sepan lo suficiente como para alentar a sus alumnos para aprender la materia.Mucho más importante es que los maestros especializados en Matemática posean una mayor comprensión matemática. Creo que ningún maestro tiene jamás lo suficiente. Somos profesionales como docentes de Matemática, y los profesionales deben comprometerse con el desarrollo profesional en su área de trabajo. Si esperamos eso de las estrellas del fútbol, ¿por qué no de los profesores de Matemática? Imaginar que un profesor de Matemática puede dejar de aprender sobre la materia equivale a sugerir que un equipo de fútbol de primer nivel puede dejar de entrenarse.


Este nuevo recurso no sólo va dirigido a alumnos/as (que son siempre los destinatarios finales). Como casi todos los que diseño, está pensado, en primera instancia,  para los docentes. Pretendo favorecer, con el mismo, una visión más rica y amplia de la enseñanza-aprendizaje de los perímetros que no se reduzca a una simple medición y suma de longitudes... Invito a los docentes que no hayan experimentado o reflexionado suficientemente sobre este tópico a que, de una manera especial, realicen ellos mismo las exploraciones que se proponen en el apartado cuarto del menú ("Exploración de relaciones perímetro-área. regularidades").


25 febrero, 2013

Velocidad, móviles y razonamiento matemático

Ofrezco aquí la versión definitiva (ampliada y mejorada) de esta aplicación que ya fue presentada y tratada en dos post anteriores: 



    Se trata de la versión con la que a finales de septiembre me decidí a participar, un año más, en la convocatoria a  Premios al desarrollo de Materiales Educativos_2012 del Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF). En esta ocasión no he obtenido premio, lo cual asumo con total naturalidad y deportividad después de haber sido premiado en cinco convocatorias consecutivas... 



    Está pensada para niños/as del tercer ciclo de Primaria así como para la atención a la diversidad en ESO. Dispone de guías (didáctica y de utilización) así como de una justificación de la propuesta.


    Pantalla de acceso a los diferentes apartados de la aplicación


    05 febrero, 2013

    Cuestión de Educación

    Para la reflexión sobre el sistema educativo, la formación del profesorado y otras cuestiones educativas y culturales  en España...



    http://www.lasexta.com/videos/salvados/2013-febrero-3-2013020300007.html


    02 febrero, 2013

    Resolución de problemas de matemáticas en Primaria. Problemas "de competencias"





    En el curso escolar 2008-2009 participé en un Grupo de Trabajo organizado por el CEP de Lebrija (Sevilla) y coordinado por mi colega y amigo Domingo Galán Ojedo que tenía como objeto el diseño de problemas aritméticos escolares de diferentes niveles y tipos. A él se debe, creo, la denominación de "problemas de Competencias" que aparece en el documento de arriba y en el título de este artículo. No sé si es la denominación más adecuada pero ésta, de cualquier modo, no es una cuestión fundamental aquí. Me propongo, en cambio, analizar las cuestiones didácticas fundamentales que guían este novedoso enfoque de la RP (resolución de problemas).

    En el artículo Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV) (sábado, 27 de octubre de 2012) expliqué con detalle - y listado de recursos TIC- el método fundamental que sigo en la resolución de PAEV, en el que van de la mano el desarrollo de competencias lingüísticas y el desarrollo de competencias matemáticas. Como se verá a continuación, el enfoque de "problemas de Competencias" , entre otros aspectos, hace hincapié también, y de manera especial, en la importancia de la lectura comprensiva de información escrita, tabulada y gráfica...Dicho de otro modo, contempla la RP como tarea ideal para el desarrollo conjunto de competencias lingüísticas y matemáticas. Todo ello en consonancia con la normativa educativa andaluza para el tratamiento de la lectura desde cada una de las áreas curriculares...

    ..."el proyecto educativo incorporará los criterios generales para el tratamiento de la lectura y la escritura en todas las áreas y materias del currículo" ... 
    (Instrucciones de 11 de junio de 2012 de la Dirección General de Ordenación Educativa sobre el tratamiento de la lectura para el desarrollo de la competencia en comunicación lingüística...)

    El documento que encabeza este artículo es un cuadernillo de problemas tal y como se entrega a los/as alumnos/as. Presenta siete situaciones (propuestas por varios maestros/as diferentes) que han sido abordadas, cada una de ellas, mediante numerosos problemas enlazados...

    Una característica común a todos y cada uno de ellos, que salta a la vista, es que la información textual , tabular y gráfica es profusa. Se pretende que los/as alumnos/as de segundo y tercero ciclos de Primaria se acostumbren a enfrentarse, en clase de Matemática y en relación con la RP,  con informaciones no necesariamente cortas  y fragmentadas - como suele ser habitual - sino que deben asumir que en clase de Matemáticas también se lee, que la lectura comprensiva y el análisis de la información es la fase inicial del proceso de RP. Ilustra, además, la naturalidad y la frecuencia con que se presenta información textual y, sobre todo, la tabulada y gráfica, para abordar la matemática de las situaciones de la vida diaria...

    Un centro de interés o situación real y cotidiana (equipo de natación, cumpleaños, carnaval, boda, comedor escolar,...) aglutina un conjunto de problemas perfectamente contextualizados (datos reales, situaciones y lugares reales,...) que abordan dicha situación desde diferentes puntos de vista de interés matemático, implicando contenidos de los diferentes bloques (números y operaciones, medida, formas y orientación en el espacio, tratamiento de la información,...). En cada situación, la información facilitada (de entrada) así como la información relativa al procesamiento de ésta (operaciones indicadas, cálculos,...) y las soluciones, se integran de manera ordenada en el espacio del papel.



    17 enero, 2013

    e-Matemáticas


    Scopeo número 004 e-matematicas from Eraser Haikus


    Buen monográfico sobre Matemáticas y TICs; aunque, a mi juicio, es sensiblemente mejorable el capítulo 3 correspondiente al "Banco de recursos de e-Matemáticas" : considero que se relacionan recursos muy heterogéneos desde el punto de vista de su relevancia cualitativa y cuantitativa, que se omiten otros mucho más relevantes y fundamentados y que está sesgado hacia la ESO).

    Desde aquí, mi agradecimiento a Eduardo Zurbano Fernández por referenciar este blog en el monográfico y por el elogio que hace de mi trabajo.

    04 enero, 2013

    ¡Bienvenido 2013!


    ¿Qué nos deparará este nuevo año?
    Muchas incertidumbres y malos presagios se ciernen sobre numerosas parcelas de la actividad humana global (economía, trabajo, medio ambiente, alimentación, sanidad, energías,...) en esta persistente crisis sistémica.

    Por otro lado, "...más de 100 sociedades científicas, universidades, institutos de investigación y organizaciones de todo el mundo se han unido para dedicar el año 2013 como un año especial para las matemáticas del Planeta Tierra.
    Los desafíos que enfrenta nuestro planeta y nuestra civilización son multidisciplinarios y multifacéticos, y las ciencias matemáticas juegan un papel central en el esfuerzo científico para comprender y hacer frente a estos desafíos."


    Yo, por mi parte, a modo de juego, voy a tratar aquí de un aspecto cierto y poco comprometido del año 2013: su análisis desde el punto de vista de la divisibilidad manejando conocimientos que sería deseable que los/as alumnos/as dominasen al final de la Educación Primaria.

    Salta a la vista que 2013 no es un número primo, pues es múltiplo de 3 (la suma de sus cifras es 6 - un múltiplo de 3-). Por otra parte se cumple que la diferencia entre la suma de sus cifras pares y la suma de sus cifras impares es 0. Por lo tanto, 2013 es múltiplo de 11 (un número es divisible por 11, si la diferencia entre la suma de las cifras que ocupan los lugares impares y la de los pares es 0 o un múltiplo de 11).

    Como 2013 es múltiplo de 3 ( o divisible entre 3), se podrá expresar como suma ( o diferencia) de múltiplos de 3. Así, por ejemplo:
    2013 = 2100 - 87
    2013 = 1800 + 180 + 33, etc...
    Por lo tanto, sabido de antemano que uno de los factores primos de su descomposición factorial es el 3, podremos calcular otro factor así:
    2013 : 3 = (2100 - 87) : 3 = 2100:3 - 87:3 = 700 - 29 = 671
    2013 : 3 = (1800 + 180 + 33) : 3 = 600 + 60 + 11 = 671, etc...
    Tenemos, pues, que 2013 = 3 x 671. Lógicamente, el factor 11 presente en el número inicial no ha desaparecido, sino que está presente en la descomposición del número 671 (671 = 11 x ¿?).

    Teniendo en cuenta que 11 x 60 = 660, es fácil averiguar que 671 = 11 x 61. Llegamos, así, a la descomposición factorial del número correspondiente al recién estrenado año:

    La siguiente aplicación nos muestra, en un instante, todos los números primos comprendidos entre 1 y cualquier número menor que 40.000. También permite obtener, en un instante, la descomposición  factorial de números menores que 1000.000.000 evaluando, a la par, si el número estudiado es, o no, primo:

    11 diciembre, 2012

    El currículo de matemáticas no es sólo numeración. La numeración no es sólo cálculo.

    De nuevo me veo llevado a hacer un análisis crítico de ciertos aspectos en torno al “método ABN” y al correcto enfoque del cálculo en la escuela en relación con las características del cálculo en nuestra sociedad. Soy consciente de que hacer afirmaciones rotundas al respecto nos lleva a un terreno no exento de peligros.
    algoritmo ABN
    Fuente: "algoritmo abn"

    El blog “Algoritmos ABN” es uno de los sitios de referencia para la didáctica de la Matemática en Primaria que relaciono en la parte derecha de mi blog. Y es que estoy totalmente de acuerdo con el enfoque flexible del cálculo que Jaime Martínez Montero ha etiquetado con la marca “ algoritmo abn”.  De hecho, con anterioridad a la aparición de esta marca, una minoría de maestros/as ya veníamos defendiendo y practicando un cálculo flexible alternativo al tradicional, sobre todo desde que a finales de los 90 se multiplicaran las publicaciones que abordaban el tratamiento de algoritmos no tradicionales, de las operaciones básicas, en la escuela.

    Por mi parte, vengo desarrollando con mis alumnos un cálculo pensado, flexible y basado en números y he desarrollado múltiples formatos digitales interactivos para divulgar y favorecer la práctica del cálculo (tanto descontextualizada como contextualizada)  bajo este enfoque ("Así calculamos en mi cole") aunque no bajo la etiqueta "abn".

    Este enfoque flexible apuesta por el desarrollo de algoritmos no tradicionales de las operaciones aritméticas para evitar las rigideces que presentan los tradicionales. Confiere al cálculo un carácter subjetivo y creativo (frente a "Esta división se hace así", "Yo hago esta división así"). Hace del cálculo una tarea pensada, matemáticamente relevante (algo que no se puede asegurar, sin más, en enfoques más tradicionales) dándole el rango de habilidad cognitiva de orden superior; y se adapta mejor a la diversidad del alumnado presente en las aulas. Y, sobre todo, es más coherente e integrador que el cálculo tradicional ya que aprovecha la natural descomposición/composición numérica de los números y las mismas estrategias y propiedades fundamentales de las operaciones se utilizan tanto para el cálculo que se apoya en lápiz y papel como para el que se realiza  “de cabeza” (que ha pasado a ser, sin duda, el verdaderamente importante)
    "Hay otra razón que aboga por la inclusión del cálculo pensado en las clases, y es que la mayoría de las personas que son consideradas hábiles para calcular rara vez hacen uso de los algoritmos usuales, sino que suelen recurrir a manipular los números para facilitarse la tarea."
    Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67.
    "La tragedia del algoritmo estándar en la escuela, ha llegado de la mano de las calculadoras de bolsillo y de las cajas registradoras.
    Lo que para todo el mundo era un elemento crucial de cualquier currículo escolar hace veinte años, ha empezado a ser considerado como algo que va perdiendo importancia al mismo ritmo que aumenta el interés por el cálculo mental y estimativo." 
    Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 113.  

    El cálculo que realizan la mayoría de las personas en nuestra sociedad actual es un cálculo instrumental (calculadoras, cajas registradoras, computadoras,…). ¿Quién hace cálculos fuera de la escuela con ayuda de lápiz y papel? ¿Significa esto que no tiene ya sentido desarrollar razonables competencias de cálculo en nuestros/as alumnos/as?

    No, evidentemente no, puesto que toda capacidad humana debe ser desarrollada. Significa plantearse la naturaleza y tipología del cálculo que tiene sentido desarrollar en la escuela, la magnitud de los números con los que se debe operar y las formas más razonables de abordarlos. Significa un esfuerzo por contextualizar el cálculo así como por el desarrollo de estrategias personales para calcular…Significa priorizar el cálculo aproximado y la estimación. Significa entender bien, de manera integrada y proporcionada, el currículo dematemáticas. 

    Tradicionalmente el peso curricular recaía de manera aplastante sobre la numeración, más en concreto sobre los algoritmos de las operaciones básicas.  Se trataba de un currículo de matemáticas ciertamente empobrecido. Este es uno de los aspectos fundamentales que hay que superar. Actualmente tiene menos sentido que nunca que el cálculo (del tipo que sea) acapare la mayor parte del tiempo destinado al desarrollo del currículo de matemáticas en la escuela, sobre todo si se trata de un cálculo predominantemente descontextualizado. No faltan los que abogan por destronar el cálculo de la cima del quehacer matemático en el que se encuentra. Hay que asumir que el currículo de matemáticas de Primaria aborda las cantidades, el espacio y las formas, los cambios y relaciones, así como la incertidumbre. Y que el eje vertebrador de estos bloques es la resolución de problemas. 


    "Jaime Martínez, inspector de educación, explorador de algoritmos, ha soñado un mundo sin cuentas. Ha ido más allá. Lo está poniendo en práctica. 225 niños de Primaria de la provincia, entre Primero y Quinto, aprenden matemáticas sin hacer cuentas..."
    Cuando uno visita el blog “Algoritmos ABN (que persigue entre sus objetivos explícitos erradicar las viejas cuentas y favorecer una matemática más divertida), observa que casi la totalidad de la ingente cantidad de imágenes y vídeos que en él se incluyen  se centran en cálculos numéricos. Aparentemente se trata de "nuevas cuentas" que se articulan en forma de tablas de números. Sin embargo hay una diferencia notable con las cuentas tradicionales. Desde que se inicia el proceso de resolución, cada fila que se va escribiendo es una igualdad equivalente a la anterior, de manera que no hay que esperar a que el proceso haya acabado para haber transformado de manera coherente el cálculo inicial propuesto: 236 - 189 = 136 - 89 = 106 - 59 = 100 - 53 = 50 - 3 = 47 (para una resta "por comparación"), o 236 - 189 = 11 + 36 ( para una resta "por escalera ascendente"),...

    Evidentemente el hecho de que se recurra continuamente a la pizarra o al papel de una ficha o cuaderno no significa que no se trate de un cálculo “pensado”. Otro aspecto a tener en cuenta es que se utilizan algoritmos extendidos, más extensos, que van dando cuenta de cada uno de los pasos realizados. Esto no debe identificarse con una mayor dificultad que los tradicionales (que son “más económicos”) dado que a medida que un alumno progresa en el desarrollo de competencia en cálculo se reduce notablemente el número de pasos que utiliza para resolver un cálculo determinado. No me cabe duda del buen enfoque que se hace en ese sentido, priorizando claramente la comprensión sobre la mecanización y favoreciendo el afloramiento de modos personales de realizar los cálculos.
      
    Pero, con sinceridad, siento que los/as maestros/as debemos ser muy torpes cuando parece ser que necesitamos que se nos ilustre hasta la saciedad el mismo método de cálculo para cada uno de los diferentes cálculos posibles (que son, evidentemente, infinitos). En realidad, casi todo se reduce a que tanto la suma, resta, multiplicación y división se pueden realizar “por partes”,  de manera flexible o personalizada ( no necesariamente todos/as los/as alumnos/as en los mismos pasos ni con los mismos números) y basándose en la descomposición numérica y las propiedades fundamentales de las operaciones básicas. Es por ello que el blog aludido transmite visualmente la idea de que el quehacer fundamental en  matemáticas de Primaria es el cálculo. No vemos en el blog ninguna referencia al mundo del espacio y las formas ( a excepción del método para resolver raíces cuadradas), ni al de la incertidumbre …

    Podríamos extendernos tanto como quisiéramos en poner de manifiesto (como se hizo desde el origen de las matemáticas) las relaciones entre números y formas, cómo se apoyan y refuerzan mutuamente y cómo fruto de esa simbiosis se ponen de manifiesto con mayor fuerza patrones  o regularidades numérico-geométricas… No tendría nada que objetar si se identifica el “método ABN” con un método de cálculo, como así se presenta habitualmente. Pero es que desde el blog aludido y desde otros, así como desde diferentes medios de comunicación y documentos se hacen afirmaciones (a mi juicio poco rigurosas) más generales que apuntan hacia una inconveniente metamorfosis ( CÁLCULO = ALGORITMOS ABN = "LA SENDA PARA  ALCANZAR COMPETENCIA MATEMÁTICA"). ¿Debe interpretarse como la única senda? ¿Debe interpretarse que la competencia en cálculo es la única o más importante de las competencias matemáticas? Espero que no, porque ello supondría reducir el currículo de matemáticas a simple cálculo, volviendo a incurrir en errores parecidos a los que se pretendía superar… Esto me parece especialmente peligroso en estos tiempos tan tecnológicos en los que curiosamente se exalta más que nunca el desarrollo de la capacidad de cálculo (a veces de manera poco razonable, como si se pretendiera crear "calculadoras humanas") identificándolo con la excelencia en matemáticas.

    Me voy a limitar aquí al análisis de algunas afirmaciones relacionadas con la resolución de problemas y con la descripción de las características del "cálculo abn": 
    Con la nueva didáctica de las matemáticas que propugna Jaime Martínez se llega a los resultados correspondientes por desagregación o descomposición de las cantidades a operar... (Jaime.M.M)
    ¿Nueva didáctica de las matemáticas o no tan nueva didáctica del cálculo? 
    "Las viejas cuentas son la causa fundamental que impide que los alumnos sepan resolver problemas"(Jaime.M.M)
    Uno de los grandes "fallos" en la enseñanza tradicional de la aritmética es que se identifica operación con el algoritmo (cuenta) que la resuelve:
    "Nuestro aprendizaje de cada una de las operaciones está tan ligado a su algoritmo que se suele confundir operación con el algoritmo usual que la resuelve" Bernardo Gómez Alfonso ("Numeración y Cálculo. Matemáticas: Cultura y aprendizaje. Editorial Síntesis.1989. Página 67. 
    No volvamos a cometer el mismo error (operación ¹ algoritmo de la operación)
    Además, desde hace mucho tiempo los maestros nos venimos  quejando de que los alumnos no sepan con qué operación (u operaciones) se resuelve un determinado problema ("¿Es de sumar o de restar?"), en mucha mayor medida que sobre la propia realización de los cálculos. 
    "Los algoritmos ABN aumentan notablemente la capacidad de resolución  de problemas" (Jaime.M.M)
    ¿Cómo? ¿De qué manera? ¿De qué problemas? Porque la realización de cálculos, incluso en los problemas típicamente aritméticos - que no son los únicos-, es una de las fases finales del proceso de resolución, y no precisamente la más relevante. A no ser que se considere como "problema" realizar un determinado cálculo. Esto sólo podría aproximarse a la verdad en los problemas aritméticos más elementales, los de una sola operación, en caso de que se presenten a los alumnos de forma que el "espacio de búsqueda" sea prácticamente inexistente. (Ver "Desarrollo de competencias lingüísticas y matemáticas en la resolución de problemas aritméticos de enunciado verbal (PAEV)") 

    "Un grupo de investigadores europeos ha visitado recientemente el Colegio San Rafael (Cádiz) para conocer el funcionamiento de este método de cálculo ideado como sabemos por Jaime Martínez, inspector de educación de la Delegación de Cádiz.

    Procedentes de distintos países como Austria, Holanda, Alemania, etc. dichos investigadores pudieron comprobar de primera mano los resultados de este revolucionario método que demuestra que los alumnos de primaria mejoran no sólo su nivel de cálculo y su capacidad de resolución de problemas sino también su motivación en el aprendizaje de las matemáticas." [...]

    [Fuente: "Las matemáticas de Cádiz". Diario de Cádiz (versión impresa). Fecha: 21/09/2012]

    Algoritmos y resolución de problemas
    Fuente: "algoritmo abn"
    En el blog “Algoritmos ABN”, se hace bastante alusión teórica a la relación entre las operaciones y las tipologías de problemas aritméticos de enunciado verbal (PAEV) que resuelven. Sin embargo este "revolucionario método ABN” no explicita ningún método concreto de resolución de estos problemas. Encontramos casi exclusivamente un modelo de resolución de PAEV, el modelo más tradicional. Con frecuencia vemos imágenes en las que el/la maestro/a ha escrito el enunciado de un PAEV en la pizarra y, a continuación, sin más, el algoritmo extendido con el que se resuelve. Es cierto que se asocia con mucha frecuencia un cálculo concreto con un determinado problema como forma de contextualizar el cálculo, y que incluso se hace una análisis comprensivo del enunciado. Lo peligroso es  asociar el algoritmo con la resolución de un PAEV ( incluso para los problemas más elementales), como se recoge en este texto del propio Jaime M. M. (hablando de la "doble resta" y de la "sumirresta"):

    "[...] Aparte del nuevo campo de posibilidades de cálculo que abre, la importancia fundamental de estas operaciones radica en que simplifica enormemente el mundo de los problemas porque convierte, de golpe y sin transición, muchos de ellos de dos operaciones que son difíciles para los niños (todos los de dos restas y todos los de una suma y una resta) en problemas de una operación, simplificando enormemente la complejidad de su comprensión y su realización. Hay siete problemas distintos de sumar y, como vimos hace poco, trece diferentes de restar. Quiere decir que, combinándolos simplemente, nos salen 91 problemas distintos de sumar y restar (13 x 7), y 169 de dos restas (13 x 13). Es decir, que con la doble resta y la sumirresta cambiamos 260 problemas diferentes de dos operaciones en problemas de una operación. ¡Casi nada!


    Los problemas de dos operaciones son especialmente difíciles para los niños. No es complicado averiguar por qué y hay una amplia literatura científica que da cuenta de ello. Para nuestro propósito, baste pensar que en un problema de una operación aparecen los datos y la pregunta. En uno de dos operaciones aparecen los datos de la primera operación, pero no la pregunta, mientras que en la segunda operación sí aparece la pregunta, pero solo uno de los datos. Véase el caso siguiente: “Un bosque con 2145 árboles se incendia y arden 368. Después plantan 325 árboles más. ¿Cuántos árboles hay ahora?” Es evidente que la primera operación (2145-368) no tiene pregunta, y que la segunda (1777+325) no tiene el dato de los 1777 árboles.


    Por lo anterior, la sumirresta facilita mucho todo el proceso. Es fácil pasar directamente del texto al formato del algoritmo, y luego permite múltiples posibilidades de desarrollar los cálculos de uno u otra manera. La resolución clásica obliga a realizar primero una operación y luego otra, mientras que aquí se pueden abordar los cálculos sucesiva o simultáneamente." 

    Aquí se hacen afirmaciones explícitas e implícitas a mi juicio poco rigurosas:
    • Hay operaciones que simplifican enormemente la complejidad de la comprensión de un determinado problema, cuando comprender un problema implica previamente descubrir las relaciones entre las magnitudes y las operaciones que transforman unas en otras...Ahí radica precisamente la esencia del acto creativo que supone la resolución de un problema y ahí radica, por tanto, su dificultad. De nuevo se identifica operación con algoritmo de la operación, que es un útil para efectuar ésta, y parece identificarse la realización del algoritmo con la esencia de la resolución de un problema. No comparto tal idea.
    • Parece que la tipificación de problemas es pura aritmética combinatoria. Aunque estoy seguro de que esa no es la visión de Jaime M.M. al respecto.
    • Parece que el proceso de resolución de problemas aritméticos se limita al paso del enunciado al formato del algoritmo, es decir, del texto al cálculo. Esta peligrosa asociación más que superada en la amplia literatura científica a la que el propio Jaime M. M. alude, supone un  reduccionismo del aspecto más troncal y vertebrador del currículo de matemáticas: la resolución de problemas (RP). Si bien esto se puede hacer fácilmente, aunque no sea lo más conveniente en la R.P, para PAEV de nivel 1(una sola operación), me llama poderosamente la atención lo artificioso que resulta justificar la doble resta y la sumirresta en relación con la resolución de PAEV de nivel 2. Sinceramente, parece un invento para encajar, con calzador, la resolución de estos problemas con un único algoritmo... No creo que sea éste el camino más conveniente en la búsqueda de comprensión. Me parece una senda poco conveniente en la didáctica de RP, máxime viniendo de una persona que apuesta por algoritmos extendidos, aunque sean menos económicos que los tradicionales, para  favorecer una mayor comprensión de los cálculos realizados y el desarrollo de estrategias de cálculo... 
    Para terminar: 
    Desde una perspectiva holística de las matemáticas, cualquier parte (bloque de contenidos) debe gozar en buena medida de los atributos de la totalidad (currículo de matemáticas) pero no sería riguroso  identificar la parte con el todo ni  el todo con la parte.