01 febrero, 2012

Los mejores contenidos multimedia para Matemáticas_Primaria

¿Dónde se encuentran los mejores contenidos educativos digitales multimedia para el área de Matemáticas en Primaria?

Durante un curso de formación se me hizo esta pregunta. Es obvio que la respuesta está sujeta a la subjetividad (sobre gustos no hay nada escrito) y condicionada por la variable tiempo (continuamente aparecen nuevos contenidos educativos). No obstante, me voy a atrever a dar mi propia respuesta argumentada, a hacer mi propio "top 10", que no necesariamente va a coincidir con los sitios más populares...

Para la realización de este top voy atener en cuenta fundamentalmente tres variables (cantidad, calidad y disponibilidad). Por disponibilidad voy a entender tanto su gratuidad como la facilidad para acceder al conjunto de los contenidos y enlazarlos o incluirlos en webs personales, blogs educativos, etc... Si bien la cantidad es una variable objetiva, nos encontramos con que la valoración de la calidad es subjetiva. Algunos indicadores de calidad que tengo en cuenta son: una estética amigable, integración multimedia, interactividad - sobre todo del lado  del alumno-, relevancia curricular y adecuación didáctico-metodológica.  No todos los contenidos educativos que forman parte de una misma colección o proyecto tienen la misma calidad (muchas veces como consecuencia de haber sido realizados por diferentes desarrolladores, incluso por grandes colectivos) ni aún cuando proceden de un mismo desarrollador (que se supone que ha ido mejorando su obra con el paso del tiempo).

Por otra parte, estoy convencido de que, a pesar de los intentos, no se puede medir la calidad del software educativo de forma correcta y objetiva debido a su propia naturaleza (no es un material que se fabrica, ni se degrada físicamente, sino que se desarrolla). La calidad del software no se certifica, lo que se certifica, a veces, son los procedimientos para construir un software de calidad. Los procedimientos deben ser correctos y estar en función de normativas de normalización dictadas por organismos internacionales (públicos y privados), nacionales, regionales,... que pueden manejar intereses que desvirtúen el objetivo que persiguen...(El hecho, por ejemplo, de que una empresa tenga certificación en calidad de software no garantiza que su software sea de calidad).

Así, pues, voy a abordar este objetivo desde mi experiencia personal (desde 1999) como desarrollador de contenidos educativos digitales para el área de Matemáticas (casi todos ellos premiados en concursos públicos), desde mi dilatada experiencia de aplicación de contenidos educativos digitales en el aula, teniendo en cuenta principios generales sobre matemáticas escolares y aspectos didácticos así como las variables anteriormente aludidas.


1.- ITE (Instituto de Tecnologías Educativas. Ministerio de Educación, Cultura y Deporte. Gobierno de España.) (Creo que el hecho de que su director, Antonio Pérez Sanz, haya sido una de las figuras más destacasdas del panorama nacional en relación con la divulgación didáctica de las Matemáticas, ha influído muy positivamente en la enorme producción, al respecto, de materiales para esta área llevada a cabo en los últimos años...).

Entre los contenidos educativos digitales, para Matemáticas, del ITE se pueden encontrar:

a.-) Los realizados por profesores, personas físicas y entidades sin ánimo de lucro en los concursos anuales convocados para tal fin. Entre ellos cabría destacar:
 b.) Obras colectivas producidas y desarrolladas por el propio ITE:

"El ITE ha desarrollado el Proyecto Gauss que brinda al profesorado varios centenares de ítems didácticos y de applets de GeoGebra, que cubren todos los contenidos de matemáticas de esos niveles educativos (Primaria y Secundaria) y están diseñados para ser utilizados tanto en la pizarra digital como en los ordenadores de los alumnos. El proyecto Gauss pretende ser una demostración inequívoca de que el Programa Escuela 2.0 brinda a la comunidad escolar una forma diferente y creativa de enseñar y de aprender matemáticas." (Antonio Pérez Sanz, director del ITE).








Desde el Instituto de Tecnologías Educativas del Ministerio de Educación de España, a través del proyecto Descartes, se ha diseñado y abordado la producción de recursos TIC que buscan contribuir a la difusión y conocimiento de los materiales didácticos de la profesora Mª Antònia Canals introduciendo una perspectiva enmarcada en el Programa Escuela 2.0. Una inmersión digital que si bien obliga a una reinterpretación de cada material ha perseguido reflejar y recoger la experiencia acumulada por la profesora siguiendo su guía educativa.
El "Proyecto Canals: canales cartesianos hacia el conocimiento de las matemáticas en Infantil y Primaria" (http://recursostic.educacion.es/canals/web/index.htm) comenzó su andadura ofreciendo una colección de 302 objetos de aprendizaje interactivos para la etapa de Infantil y Primaria. A lo largo de este año 2011 se ha continuado trabajando en la misma línea para ampliar esta oferta y se acaba de actualizar la web con otros 54 objetos, que se localizan en la sección de “materiales”. 

(Las unidades interactivas de este sitio requieren la máquina virtual de Java. También requieren el plugin de Descartes Web 2.0, ver. 4.1 o posterior)



"Descartes" es un proyecto educativo que reúne gran cantidad y variedad de materiales didácticos y en el que participa un buen número de profesores.
Estos materiales, destinados al aprendizaje de las matemáticas de la enseñanza secundaria, cubren prácticamente la totalidad de los contenidos de los currículos de los niveles de primaria, ESO y Bachillerato.
Sus páginas incluyen "escenas" o applets interactivos fáciles de usar y adaptables por cada profesor a la didáctica y metodología que crea más conveniente.
El alumnado, además de disponer de los contenidos necesarios, puede interactuar con los applets para investigar propiedades, adquirir y relacionar conceptos, aventurar hipótesis y comprobar su validez, hacer deducciones, establecer propiedades y teoremas, plantear y resolver problemas y, en general, realizar todas las actividades propias del aprendizaje de las matemáticas.




PI 2.0” es un proyecto de producción de recursos multimedia, digitales, educativos e interactivos. Su propósito es cubrir las necesidades relacionadas con la enseñanza y aprendizaje de contenidos de Lengua y Matemáticas en los niveles de 5º y 6º de Educación Primaria. Se trata de disponer de recursos para utilizar de forma preferente en la pizarra digital interactiva aunque serán también  susceptibles de usar a nivel individual en el equipo notebook."

En concreto, para el área de Matemáticas ofrece 15 aplicaciones, basadas en Java:

2.- didactmaticprimaria.com  (Este mismo blog)


En el menú derecho de este blog, en Mis Trabajos_MaTIC , se ofrecen,  integrados en forma de páginas web autocontenidas, diferentes proyectos. Casi todos ellos han sido premiados (por la Junta de Andalucía o por el Ministerio de Educación -a través del ITE-).
En Manipulables_Virtuales_Matemáticas_I, Manipulables_Virtuales_Matemáticas_II, y Manipulables_Virtuales_Matemáticas_III, actualmente se ofrecen 180 objetos de aprendizaje, realizados con Flash. Está previsto, en pocos días, añadir 50 nuevos recursos digitales así como el aumento progresivo de los mismos a medio plazo. En la mayor parte de los casos,  estos objetos de aprendizaje proceden de la desagregación de los proyectos que se recogen en Mis Trabajos_MaTIC , algunos de ellos mejorados y adaptados para su uso con PDI; otros perfeccionados y ampliados; otros, nuevos...

Como características generales de estos recursos destacan una excelente interactividad puesta al servicio de procedimientos (que se priorizan sobre los contenidos), la configuración de los mismos en  diferentes niveles o grados de dificultad - para su mejor adecuación a la diversidad del alumnado-,  así como una sólida fundamentación didáctica y una buena dosis de creatividad en la forma de presentar los contenidos; sin olvidar una estética amigable... Esto se traduce en una riquísima variedad de metamodelos de actividades TIC, es decir, en una muy rica diversidad de procedimientos para realizar las actividades y retos propuestos...

La práctica totalidad de los mismos están perfectamente adaptados para su uso con pizarra digital.

3.- Las aplicaciones de Matemáticas de JClic.




Actualmente, zonaClic cuenta con 153 actividades u objetos de aprendizaje de matemáticas para la Etapa Primaria. Como mérito indiscutible hay que reconocerle su labor, pionera en España, de recopilación y difusión de aplicaciones educativas digitales realizadas por docentes con el programa de autor Clic, creado por Frances Busquets (que ha ido adaptando y actualizando). Entre otras características interesantes, La zonaClic presenta un eficaz sistema de búsqueda de actividades...

Este conjunto de aplicaciones es tan diverso y heterogéneo (en relación con la complejidad de las aplicaciones, su estética, etc...) como diverso y heterogéneo es el conjunto de autores de las actividades...

Si bien el programa Clic facilitó que muchos profesores pasaran a ser autores de contenidos multimedia, el propio programa de autor presenta una limitación de tipologías de actividades (de asociación, puzzle, crucigrama, completado de texto, etc...), de procedimientos de realización de las mismas, sobre todo porque no utiliza código de programación por parte de los desarrolladores...

Es por ello que esta herramienta de autor, muy adecuada para desarrolladores principiantes, se queda corta para desarrolladores con más pretensiones...


En la entrada de este blog de título "Matemáticas con Flash_II", se ofrecen las 72 aplicaciones, realizadas con Flash, que Mario Ramos Rodríguez ofrece en su sitio web  bajo el título genérico Matemáticas 5º y 6º EP. Allí se hace un breve análisis de las características de las mismas, entre las que destaca su enfoque centrado en contenidos.


En la entrada de este blog de título "Matemáticas con Flash_I. Proyecto Agrega", se ofrecen las 22 aplicaciones de matemáticas, para Primaria, realizadas con Flash, que se ofrecen en el catálogo descargable (en .pdf) de este proyecto, así como un análisis de las características generales de las mismas, entre las que destaca su lograda estética y calidad multimedia.


En la entrada de este blog de título "Matemáticas con Flash_II", se ofrecen las 45 aplicaciones que ofrece GenMagic, realizadas con Flash,  en su sitio web. Allí se hace un breve análisis de las características generales de las mismas, entre las que destaca su sencillez.

7.- Matemáticas simpáticas (Junta de Castilla y León) .

Buena calidad multimedia (sonido, sobre todo). En su conjunto, aparenta ser un recurso de más calidad y profundidad didáctica de las que realmente tiene. Prácticamente no existe  interactividad de parte del alumno. Las actividades no está adaptadas para su uso con pizarra digital.

8.- Aplicaciones de Matemáticas de Educarex (Junta de Extremadura).
Educarex ofrece un buen número de temas y apartados para el área de matemáticas. Las aplicaciones son muy buenas desde el punto de vista multimedia (sonido sobre todo), pero excesivamente uniformes, a mi juicio, desde el punto de vista estético (casi todas las pantallas parecen la misma) y procedimental (forma de resolver las actividades propuestas). La interactividad de parte del alumno es baja. Además, los textos y gráficos se centran exclusivamente en la realidad de esta comunidad autónoma. No están adaptadas para su uso con pizarra digital.


9.- Aplicaciones de Matemáticas de e-learningforkids.
Lástima que en este sitio encontremos sólo 13 aplicaciones de matemáticas, realizadas con Flash, para diferentes niveles, porque tienen una muy lograda estética y calidad multimedia, además de tratar de manera muy clara los contenidos que abordan, con un buen enfoque didáctico :



10.- Aplicaciones de Matemáticas de Vedoque.

Vedoque cuenta con algunas aplicaciones (juegos) de matemáticas, realizadas con Flash, sencillas, interesantes y atractivas para alumnos/as de Educación Infantil y de primero y segundo ciclo de Primaria, fundamentalmente:

Cuenta hasta cinco.(Infantil)
Cuenta animales.(Infantil)
Cuenta Bombillas. (Infantil)
Suma Monedas. (Infantil)
El hormiguero. (Infantil)

Además de estos sitios, en el apartado dedicado a Geogebra para la Educación Primaria  en este blog, podrás acceder a muchos  manipulables realizados con Geogebra,  como los incluidos en el Proyecto Gauss y los realizados por Daniel Mentrard.

Otro sitio que ofrece buen número de manipulables virtuales para la enseñanza de las matemáticas (grados preK-2, 3-5, 6-8 y 9-12) es ILLUMINATIONS, de la National Council of Teachers of Mathematics.

Otro de los sitios clásicos es la Biblioteca Nacional de Manipuladores Virtuales de la UtahState University.

23 enero, 2012

Álgebra y resolución de ecuaciones en Primaria_2


En "Álgebra y resolución de ecuaciones en Primaria_1" mostré aplicaciones TICs y enfoques, desde prealgebraicos a estrictamente algebraicos, para abordar aspectos de álgebra  y de resolución de ecuaciones ( incluso sistemas)  en Educación Primaria; siempre en un contexto de resolución de problemas.



Creo, no obstante, que lo esencial del álgebra en Primaria está ligado a la correcta expresión alfanumérica de las operaciones indicadas con las que se resuelve un problema, sobre todo en los de nivel 2 (operaciones combinadas). Nuevamente la resolución de problemas aparece como eje vertebrador de las actividades más relevantes en matemáticas.

Se trata de pasar de la sospecha inteligente de la estrategia de resolución de un problema, de los heurísticos, del relato de cómo se resuelve, a su traducción al lenguaje pre-algebraico, al lenguaje matemático...

La expresión de las operaciones indicadas, en una sola línea, obliga al alumno a un esfuerzo de abstracción y simbolización, de interpretación y traducción, a la par que ofrece - como resultado final- un modelo algebraico del problema que puede ser "manipulado" teniendo en cuenta convenios ( jerarquía de las operaciones, interpretación de paréntesis...) y las propiedades de las operaciones básicas:


Precio 2 hamburguesas = Precio total - Precio de 2 refrescos.
Precio 1 hamburguesa = La mitad del precio de dos hamburguesas =
= (Precio total - Precio de 2 refrescos) : 2 --->
Precio de una hamburguesa = [6.60 - (2 x 1.10)] : 2

Aunque el paréntesis (2 x 1.10) sea innecesario, yo, personalmente, prefiero que mis alumnos/as lo pongan. Lejos de añadir complejidad, creo que facilita la comprensión al delimitar mejor un nuevo concepto o magnitud.

Los/as alumnos/as deben interpretar correctamente cada una de las "partes" de la expresión alfanumérica de las operaciones indicadas que resuelven el problema. Yo les exijo que la expresión debe ser anterior a cualquier cálculo y que han de utilizar en la misma exclusivamente datos facilitados en el enunciado del problema.

La expresión de las operaciones combinadas en una sola línea permite captar de manera ideal (globalmente) la estructura del problema, asignando significados concretos y precisos a cada una de las partes. Además, con el añadido de texto, flechas, llaves, resultados de cálculos... sobre la propia expresión, se unifican visual y gráficamente varios pasos del proceso de resolución. La mayoría de los/as niños/as saben aprovechar el conjunto gráfico final tanto para poner texto al problema como para explicar el proceso de resolución seguido...

Pero, ¿cómo llegar a dominar la relación existente entre una determinada expresión algebraica y su significado en un contexto de RP? ¿Qué pueden aportar las TIC?

He aquí algunas de las aplicaciones que he diseñado para tal fin:








-------------------------------------------------------------------------------------
Todas estas aplicaciones, y muchísimas más, las tienes disponibles en este mismo blog, en la página fija del menú derecho titulada "Manipulables_Virtuales_Matemáticas_II".

11 enero, 2012

Álgebra y resolución de ecuaciones en Primaria_1

Los/as alumnos/as de Primaria resuelven ecuaciones sencillas desde el primer curso de Primaria, si bien éstas no se presentan (en libros y otros formatos impresos) en el lenguaje algebraico habitual (en el que las cantidades desconocidas se representan mediante letras). Una ecuación (de primer grado) es una IGUALDAD en la que aparece una cantidad incógnita cuyo valor se desea averiguar.

Es evidente que una ecuación puede expresarse en los lenguajes usuales: oralmente ("¿Por cuánto hemos de multiplicar 5 para obtener 20?", ¿Qué número hay que restar a 25 para obtener 17?",...); por escrito; de forma gráfica, de forma gráfico-numérica, etc...

No cabe duda de que los/as alumnos/as de Primaria están capacitados para resolver no sólo ecuaciones de primer grado sino sistemas de dos ecuaciones con dos incógnitas e incluso sistemas de múltiples ecuaciones con múltiples incógnitas. La cuestión fundamental es cómo se aborda didáctica y metodológicamente este contenido. Lo deseable es llegar a dominar el lenguaje algebraico, el más universal de todos los lenguajes. Lo ineludible, pues estamos hablando de enseñanza-aprendizaje de la matemática, es el razonamiento.

En este vídeo se ilustra cómo se introduce el álgebra (con el uso tradicional de la "x") para resolver una ecuación, en un contexto de resolución de problemas, en 3º de Primaria.

 


A mí me parece un tanto artificioso, por innecesario, que una niña de 3º de Primaria emplee el procedimiento formal tradicional para eludir los denominadores en la resolución de ecuaciones, es decir, multiplicar un ente tan abstracto como lo es toda una igualdad por el denominador. Parece más natural y coherente averiguar el valor correspondiente a la mitad (10 - 4 = 6) y aplicar el concepto de doble (doble y mitad se construyen  apoyándose el uno en el otro) para averiguar el valor correspondiente a la cantidad entera. De esta forma se haría uso del razonamiento proporcional, que todo niño/a posee en mayor o menor grado, y cuyo desarrollo es esencial para lograr competencia en razonamiento numérico.

De cualquier manera, para mí, la cuestión didáctica fundamental que se puede analizar en este vídeo tiene que ver con la forma de representación. Bruner consideraba tres tipos de representación (enactiva, icónica y simbólica) y propuso que los conceptos se enseñasen siguiendo estas tres fases de forma que respondiesen de manera directa a los modos hipotéticos de representación. Dicho de otra manera, la forma en que los seres humanos se representaban mentalmente los actos, los objetos y las ideas, se podía traducir a formas de presentar los conceptos en el aula...
Tradicionalmente se ha venido utilizando, antes que la representación simbólica, la representación icónica - sobre todo el modelo gráfico de balanza/s - como forma de hacer más intuitivos, más atractivos y comprensivos - y más ajustado a las características psicológicas de los niños - los problemas algebraicos, así como para el desarrollo de la argumentación lógico-numérica y prealgebraica:





La imagen superior izquierda corresponde a un manipulable virtual que podemos encontrar en ILLUMINATIONS. La imagen superior derecha está tomada de Juan D. Godino y Vicenc Font en "Razonamiento algebraico y su didáctica para maestros" La imagen de la derecha muestra una propuesta realizada por GenMagic así como una imagen correspondiente a la aplicación "Pesa Pensando_1", incluída en mi trabajo multimedia "ProblemáTICas Primaria".

Las balanzas con funcionamiento realista presentan la ventaja añadida de que, con ellas, no sólo se dota de significado al equilibrio (=) sino a los desequilibrios (> y <) o, lo que es lo mismo, permiten abordar ecuaciones e inecuaciones.

Estas imágenes ponen de manifiesto relaciones que los/as niños/as  de Primaria pueden interpretar y formular en forma de ecuaciones o igualdades. La correcta expresión de las mismas, así como del proceso de resolución, es ya una actividad prealgebraica interesante que interrelaciona expresión oral, argumentación lógica y razonamiento matemático.



Las pirámides numéricas ( en este caso el número de cada bola debe ser la suma de los números de las bolas inferiores con las que contacta) no sólo permiten trabajar de manera atractiva la suma/resta sino estrategias de resolución relacionadas con el orden de los pasos a seguir.

En una fase prealgebraica de resolución de ecuaciones o sistemas de ecuaciones los/as alumnos/as verbalizan los pasos de la resolución (que encuentran totalmente lógicos y comprensibles con el "andamiaje" gráfico) que luego se van a corresponder con los pasos tradicionales que "dicta" la teoría clásica de resolución de ecuaciones...





 Estas imágenes, tomadas por los propios alumnos/as con sus ultraportátiles, corresponden al aprovechamiento, en 6º de Primaria,  de las aplicaciones interactivas "Pesa Pensando _1" y "Pesa Pensando _2" (dependiendo del nivel da cada alumno/a) para la resolución de ecuaciones y sistemas de ecuaciones en su fase algebraica escrita (justamente en la primera sesión dedicada a ello).

 
















Los/as alumnos/as utilizan, para nombrar las incógnitas,  las iniciales de los nombres de los objetos cuyo peso quieren averiguar. De esta manera, las incógnitas representan objetos concretos y no parámetros variables.



"La utilización de representaciones icónicas permite introducir en la educación primaria un tipo de razonamiento que se puede calificar de algebraico, pre-algebraico o casi-algebraico, y que no sería posible realizar en el caso de haber optado por una representación completamente simbólica"
(Juan D. Godino y Vicenc Font en "Razonamiento algebraico y su didáctica para maestros")

Algunos profesores de Secundaria están utilizando "Pesa Pensando 1" y "Pesa Pensando_2" de la misma forma que yo acabo de ilustrar para el tercer ciclo de Primaria. He aquí una nueva aplicación (especialmente diseñada para PDI) que utiliza bastantes de las imágenes de las aplicaciones aludidas, en la opción balanza fija. Permite resolver los retos propuestos, de manera pre-algebraica, realizando trazos para dibujar líneas, flechas, rodear, tachar, anotar cantidades,...



(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)

Otro contexto prealgebraico interesante es el de las relaciones numéricas usuales. Imaginemos que una niña le dice a un niño: "Entre los dos tenemos 40 euros". Si nos preguntamos por la cantidad de dinero que puede tener cada uno de ellos, pronto caemos en la cuenta de que se trata de un problema abierto, divergente, con muchas soluciones posibles...

Efectivamente, se trata de una situación abierta porque algebraicamente toma la forma de la ecuación de una recta: x + y = 40. Como sabemos, cada punto de la recta es una solución diferente. Teóricamente habría infinitas soluciones que hacen cierta la ecuación. En nuestro caso, al solucionarla con los valores concretos asociados a los diferentes billetes y monedas del euro, imponemos restricciones a la ecuación y el número de soluciones posibles es ya finito, aunque elevado si se consideran soluciones con céntimos de euro (números decimales).

Los/as alumnos/as encuentran rápidamente una primera solución, casi siempre equitativa, el par (20,20). Parece como si resolvieran la cuestión como un problema de suma (simple combinación) a partir del recuerdo de hechos numéricos básicos (20 + 20 = 40). Pronto algún alumno descubre que niño y niña no tienen que tener necesariamente la misma cantidad de dinero. A partir de ese momento, comienzan a solucionar el problema como posibles descomposiciones del número 40 en dos números naturales (22,18); (30,10); (10;30); ertc... No tardan mucho en descubrir que hay muchísimas soluciones no enteras: (19.5,20.5); (2.8,37.2); (2.75,37.25); etc...

La descomposición numérica del número 40 en dos sumandos implica asignar una cantidad, x, cualquiera (x <= 40) a uno de ellos y averiguar luego la otra cantidad, y, de manera que y = 40 - x.  Así, pues, cuando los/as niños hacen descomposición numérica están encontrando soluciones concretas de una ecuación, aunque los/as maestros/as de Primaria casi nunca seamos conscientes de ello.

A formas más complejas de expresar relaciones numéricas, corresponden problemas con ecuaciones más complicadas que no obstante los/as alumnos/as resuelven de manera prealgebraica:

En este caso, la ecuación implícita en el problema que hay que resolver , es  x + 1 = y - 1, que equivale a x - y = -2, o a y - x = 2. Dicho de otro modo, cualquier solución en que la niña tenga 2 € menos que el niño será correcta...(Incluso a algunos adultos nos sorprende que una diferencia de 2 unidades entre los elementos de dos conjuntos se convierta en igualdad cuando se pasa una unidad de un conjunto a otro y, sin embargo, eso es lo que ocurre cuando, sin ir más lejos, pedimos a un/a alumno/a que descomponga el número 10 - con 10 lápices, por ejemplo- en dos grupos pasando, cada vez, un lápiz de un grupo a otro: De (4, 6) se pasa a (5, 5) ...) 

He aquí una aplicación que provoca la necesidad de descomponer números en un contexto de resolución de problemas relacionados con formas usuales de expresar relaciones numéricas entre dos cantidades.


(Esta aplicación en Flash, en su versión antigua, tal y como se muestra aquí, no se encuentra perfectamente adaptada para ser mostrada mediante Ruffle ( sobre todo los textos), pero se puede encontrar mejorada en el proyecto MATE.TIC.TAC.)


Las actividades de geometría han sido tradicionalmente, también, fuente de interesantes situaciones para la introducción del álgebra


Esta imagen resume un tipo de actividad que siempre propongo a los/as alumnos/as ( en 5º o en 6º de Primaria). Les pido que, con la ayuda de una trama ortométrica, encuentren todos los polígonos "recortables" (por no utilizar lo de conexos) que son composición de cuatro escuadras (mitades de cuadrado) congruentes ( misma forma y tamaño) unidas de manera que compartan lados iguales...

Obtienen, así, una colección o familia de figuras equivalentes en área ( = dos cuadrados unitarios) pero con diferentes perímetros. Se les pide que codifiquen o expresen algebraicamente el perímetro de cada una de las 14 figuras de la colección utilizando los dos valores básicos "a" y "b" correspondientes a las longitudes del lado y diagonal del cuadrado unitario, respectivamente.

Obsérvese que en la expresión del perímetro "a" y "b" son "objetos concretos" (longitudes concretas de segmentos) y que en el contexto del problema planteado no actúan como parámetros variables. A partir de la observación directa y de la constatación de la relación "a < b", se puede pedir a los/as alumnos/as que comparen, por ejemplo, los perímetros de las figuras 10 y 11 y argumenten por qué la figura 10 tiene mayor perímetro que la 11...

---------------------------------------------------------------------------------
Este artículo tiene su continuación  en Álgebra y resolución de ecuaciones en Primaria_2.

01 enero, 2012

Feliz año bisiesto 2012


Aquí reproduzco, de manera aproximada, una de las últimas clases de matemáticas (diciembre de 2011) con mis alumnos/as de 6º de Primaria.

(La mayéutica socrática no está reñida con el uso e integración de las TICs en clase de Matemáticas)



Yo: -¿Sabéis qué tiene de especial el nuevo año que se avecina, el 2012?
C.B. (al instante): - Que es bisiesto.

Yo: -¿Y qué significa el adjetivo bisiesto?
C.B. (de nuevo, al instante. Se esperaba la pregunta): - Que tiene un día más que un año normal.
Yo: -¿Cuántos días tiene un año, A.C?
A.C. (pensándoselo un poco): - 365.
Yo ( dirigiéndome de nuevo a A.C., que se distrae con facilidad): -¿Y un año bisiesto?
A.C. :- Pues un día más, 366.
Yo: -¿Y en qué mes se coloca este día más?
Casi toda la clase: - ¡En febrero!
Yo: -¡Vale!¿Alguien sabe decirme una definición de año?
R.Y:- Pues 365 días, o doce meses...
Yo: -¿Entonces un año bisiesto no es exactamente un año? Me refiero a una definición científica de año...
J.J. ( después de un momento de silencio de la case):- El tiempo que tarda el Sol en dar una vuelta alrededor de la Tierra.
F.J. (corrogiéndolo al instante): - ¡La Tierra alrededor del Sol!
J.J. (dándose una palmada en la cabeza, por su fallo):- ¡Ah, sí! Pero, en realidad, la Tierra tarda en dar una vuelta al Sol 365 días y cuarto. Si ponemos 365 días para un año cometemos un error de 6 horas, que es un cuarto de día. En dos años cometemos un error de 12 horas y en cuatro años un error justo de un día. Por eso cada cuatro años se añade un día al mes de febrero - que es el que menos tiene-, para compensar.
Yo: - Muy bien explicado, J.J. De esa manera se evita que las fechas astronómicas y cronológicas dejen de coincidir. Si no, podría ocurrir que el mes de enero - que sólo tiene que ver con el calendario, con la medida humana del tiempo, coincidiese, por ejemplo, con el verano (que es una estación provocada por la situación de nuestro planeta con respecto al Sol).
C.G.:¡Qué guay!¡Iría a la playa en enero!




Yo (viendo que algunos extienden sus manos con los puños cerrados): - ¿Alguien sabe un procedimiento para recordar los días de cada uno de los meses del año?
P.P: - Sí, con los nudillos de las manos. (Y explica correctamente el procedimiento).
P.D.: - Maestro, los dos meses de vacaciones, julio y Agosto, son de los que más días tienen.
Yo : - Sí, es cierto. ¿Alguien sabría decir lo que es un año marciano?
I.R.: - El tiempo que tarda el planeta Marte en dar una vuelta alrededor del Sol.
Yo : - ¡Correcto!
C.G: - ¿Y cuántos días son?
Yo : - No lo recuerdo. Lo podemos averiguar en Internet. Pero sí os puedo decir que cuanto más alejado está un planeta del Sol, más tarda en dar una vuelta alrededor de él y, por lo tanto, su año durará más días de los nuestros, días terrestres. De la misma manera, los planetas como Mercurio y Venus, que están más cerca del Sol que la Tierra, tendrán años de menos de 365 días terrestres, tambien llamados soles. Se me ocurre que luego lo averigüemos en Internet y hagamos una tabla que recoja la duración del año de cada planeta de nuestro Sistema Solar. Pero, lo que yo quiero ahora es que nos fijemos en el número 2012, sólo en el número. ¿Qué podemos afirmar de él?
P.P.:- Que es par, que es de la table del 2, ...
F.J.:- Que es de la tabla del 4, porque hemos dicho que era bisiesto.
Yo : A ver, F.J., explica eso con más precisión.
F.J.:- Que si contamos de 4 en 4 llegaríamos a 2012 porque 2012 es de la serie del 4 o de la tabla de multiplicar del 4.
Yo :- ¿Quién sabe expresarlo de otra manera?
C.B: -Que 2012 es un múltiplo de 4.
Yo : - Bien. ¿Y utilizando la palabra "divisible"?
I.R.: -Que 2012 es divisible entre 4.
Yo : - Bien. ¿Y cómo podemos estar seguros?
S.V: - Pues dividiendo entre 4.
Yo : - ¿Y ya está?
P.P.:- Dividiendo entre 4. Si da división exacta sí es múltiplo de 4. Si no, no.
Yo : - Muy bien. ¿Cómo harías tú mentalmente la división, P.C?
P.C.: - 2000 entre 4 y 12 entre 4 y luego lo sumo.
Yo : - Vale, pero escríbelo en la pizarra indicando las operaciones que vas a realizar y utilizando correctamente el signo igual.
P.C. ( escrito en la pizarra): 2012 : 4 = (2000 + 12) : 4 = 2000 : 4 + 12 : 4 = 500 + 3 = 503.
Yo : - ¿Estáis de acuerdo?
Casi toda la clase: - ¡Sí!
Yo : - P.C. ha descompuesto el dividendo de la división, el número 2012, en dos múltiplos de 4. ¿Podría haberlo descompuesto en tres o más múltiplos de 4?
Varios alumnos: - ¡Sí!
P.P.:- ¡Yo, yo, maestro!¡Yo sé varias manera diferentes!.
Yo : -Pues sal a la pizarra y exprésalas correctamente.
P.P y otros (escrito en la pizarra):
  • 2012 : 4 =(1000 + 1000 + 12) : 4 = 1000 : 4 + 1000 : 4 + 12 : 4 = 250 + 250 + 3 = 503.
  • 2012 : 4 =(1600 + 400 + 12) : 4 = 1600 : 4 + 400 : 4 + 12 : 4 = 400 + 100 + 3 = 503.
  • 2012 : 4 =(2000 + 20 - 8) : 4 = 2000 : 4 + 20 : 4 - 8 : 4 = 500 + 5 - 2 = 503.
  • 2012 : 4 =(1000 + 1000 + 20 - 8) : 4 = 1000 : 4 + 1000 : 4 + 20 : 4 - 8 : 4 = 250 + 250 + 5 - 2 = 503.
  • etc.
Yo : - A ver quién me sorprende con alguna forma más sencilla de realizar la división...
F.J(escrito en la pizarra):
  • 2012 : 4 = 1006 : 2 = 503 : 1 = 503.
Yo : - Bien, veo que se entiende. Os planteo otra cuestión. Hay múltiplos de 4 que también son múltiplos de 8 como el 8, el 16, el 24, ...¿Es 2012 un múltiplo de 8?
M.V. (rápidamente): - No, porque no podemos hacerlo dos trozos que sean múltiplos de ocho.
C.B. - Ni dos, ni tres, ni cuatro porque  no da exacto.
Yo : - Exprésalo mejor, M.V., utilizando el verbo descomponer.
M.V. (rápidamente): - Porque no lo podemos descomponer en dos múltiplos de 8...
Yo : - ¿Cuál es el resultado, M.V., de dividir 2012 entre 8?
P.P y otros :-¡Ay, está "chupao"!
M.V. (rápidamente): - La mitad de 503 ...
P.P :- 251.5.

Yo : - Expresa, M.V., un procedimiento indicado para dividir 2012 entre 8.
M.V. (se dirige a la pizarra lentamente):
  • 2012 : 8 = (1600 + 400 + 8 + 4) : 8 = 1600 : 8 + 400 : 8 + 8 : 8 + 4 : 8 = 200 + 50 + 1 + 0.5 = 251.5
Yo : - ¿Sabes tú alguna otra manera, C.G?
C.G. (se dirige a la pizarra lentamente):
  • 2012 : 8 = 1006 : 4 = 503 : 2 = (500 + 3) : 2 = 500 : 2 + 3 : 2 = 250 + 1.5 = 251.5.
Yo : - Bien, volviendo al resultado de la división 2012 entre 4. ¿Que significado tiene 503?
I.R (rápidamente): - Que 2012 es 503 veces 4.
Yo : - Vale, pero ¿qué es 503?
C.B. (un poco dubitativa): - ¿Que desde que comenzó el mundo, bueno no, el tiempo, ha habido 503 años bisiestos?
Yo : - ¿Desde que comenzó el mundo? ¿Desde que comenzó el tiempo?
P.P. (exaltada): - ¡Desde Jesucristo, maestro!

Yo : - Bien, este es ya un asunto algo complicado y lleno de historia. Sería conveniente que lo investigáramos en Internet. Podemos buscar "calendario juliano" o "calendario gregoriano" en Wikipedia. Por ahora vamos a suponer que el comienzo del año uno coincide con el año de nacimiento de Jesucristo. Como bien ha dicho C.B., ha habido 503 años bisiestos desde entonces. ¿De acuerdo? ¿Qué hubiera ocurrido si no se hubieran contado estos 503 años bisiestos?
P.R. (después de un ratito de silencio): - Habría que restar 503 días...

Yo : - Sí, pero ¿al tiempo astronómico, el de los astros, o al tiempo cronológico, el de los calendarios?
P.R.: - ¡Al de los calendarios!
Yo : - ¡Atentos, que esto es alogo lioso! El tiempo astronómico no se puede cambiar. No podemos adelantar ni retrasar la posición de nuestro planeta dando vueltas alrededor del Sol sin parar... Si no hubiésemos contado esos 503 años como bisiestos, el calendario iría 503 días por delante de la fecha actual, es decir, 503 días por delante del tiempo astronómico. Seguiríamos estando en un día fresco de finales de otoño pero habría que sumar 503 días, más de un año, al calendario, bueno, a la fecha actual, para saber la fecha que correspondería al día de hoy...
P.R.: - ¡Ya lo he entendido!
J.J.: De 365 a 400 van 35 y de 400 a 503 van 103. Por lo tanto, habría que añadir un año completo y 138 días más a la fecha actual.
Yo : - ¡Perfecto, J.J!¿Sabrías continuar tu razonamiento?
J.J.: - Añadimos un año completo y estaríamos en el mismo día de hoy, 20 de diciembre, pero de 2012...
Yo  (interrumpiendo): - Seguiría siendo finales de otoño. Sólo faltarían dos días para que comenzara el invierno. ¡Sigue!
J.J.: - Ahora habría que añadir 138 días, que son 120 + 18, cuatro meses y medio más o menos.

Yo  (interrumpiendo): - Totalmente de acuerdo. Por tanto...¡Sigue, D.H!
D.H.(estaba distraído): - Que hay que añadir cuatro meses y medio....
Yo (adivinando que sólo repite un eco) : - No estás atendiendo lo suficiente, D. Si añadimos cuatro meses y medio a la fecha actual, ¿en que fecha del calendario nos quedaríamos, D.?
C.B. y otros/as (exaltados y con las manos en alto): - ¡Yo, yo, maestro!
D.H. (moviendo los labios, tras un tiempo y después de haber oído algo): - ¿A principios de Mayo?
Yo : - Correcto, veo que tienes buen oído, aunque no estoy seguro de que hayas entendido el razonamiento que estamos haciendo. Bueno, resumiendo... Si  hubiéramos contado como años corrientes, de 365 días, desde el año 1 al 2012, hoy el calendario no marcaría el día 20 de diciembre sino un día de la primera quincena de Mayo. Por último, imaginaros que en vez de 20 de diciembre de 2012 el calendario marcara ya el día 20 de diciembre de 4024, justo el doble... ¿qué estación del año sería si se hubieran contado como años corrientes los 4024 años?
C.B. - La misma, maestro, porque el tiempo astronómico no varía. Estaríamos a finales de otoño.
Yo : -No, C., date cuenta que he dicho que el calendario marca 20 de diciembre de 4024. Si se han contado todos los años de 365 días estaríamos adelantados al tiempo astronómico, en el que un año es 365,25 días, ¿no crees?.
C.B. - Sí, ya lo entiendo. Ahora en vez de restar a la fecha actual 503 días habría que quitar el doble, 1006 días...
Yo : -Muy bien, C. ¿Por qué?
P.P (adelantándose a la respuesta de C.B): - Porque si en 2012 años hay 503 bisiestos, en el doble de años habrá el doble de años bisiestos.
C.G.(interrumpiendo):- ¡Eso es ya el futuro, maestro!
Yo : -Correcto. ¿Quién sabe hacer el cálculo mental de una manera aproximada?
P.R.: Ahora en vez de restar 1 año y 138 días habría que restar 2 años y 276 días.
J.J.: Maestro, yo sé otra manera. Es mejor quitar 3 años completos y sumar.
Yo : -¿Y sumar qué?
J.J.: Los días que van desde 276 a 365.
Yo : - Que son...
J.J.: De 276 hasta 300 van 24, más 65 son 89 días, tres meses más o menos..
Yo : - Muy bien, por lo tanto, aunque seguiríamos estando a 20 de diciembre, astronómicamente hablando estaríamos en...
F.J. ( y otros): Si quitamos tres años completos, seguimos estando a finales de diciembre. Si luego sumamos tres meses estaríamos a finales de marzo y sería primavera...

Yo (yendo hacia la pizarra): - O estaríamos muy próximos a entrar en ella... Bueno, ahora voy a anotar en la pizarra algunas actividades de investigación que váis a hacer con la ayuda de vuestros ordenadores portátiles y de Internet, para luego comentarlas en clase:
  • 1.-  Busca en Internet la duración de cada uno de los años de los planetas de nuestro sistema solar, expresados en días terrrestres. Haz una tabla, en tu cuaderno, para presentar la información.
  • 2.- Busca en Wikipedia "calendario gregoriano". Lee la información detenidamente y anota en tu cuaderno sólo las ideas que entiendas y sepas explicar, preferentemente las ideas que más tengan que ver con las matemáticas.